Introduction INTRODUCTION
to Optics TO MODERN OPTICS

by Grant R. Fowles

FRANK L. PEDROTTI, S.J. Professor of Physics

Marquette University . .

Milwaukee, Wisconsin University of Utah
Vatican Radio,

Rome

LENO S. PEDROTTI

Center for Occupational
Research and Development
Waco, Texas

Emeritus Professor of Physics
Air Force Institute of Technology
Dayton, Ohio



| .I ||II|I|I|I|I|||

11111111111



Electromagnetic spectrum with visible light highlighted

<— Increasing Frequency (V)

Y rays X rays Uv IR Microwave |FM AM Long radio waves

Radio waves

I | | I I 1o | | | | I I
107 10" 10 10 10 ) '10°° 1074 10~ 10° 10° 10* 10° 10® A (m)

-— - -

feemmT el Increasing Wavelength (A) —

-
-— - -_—
-

—

ST Visible spectrum T

o o
G S Y 3
N T

380
<
450




Photon Energy 058 )0 4malase

Photon Energy:E =hv = h% =hw

3x10°

00x10

1 eV
1.6x107Y° J

Blue: E = h%=6.63><10‘34 p - =4.97><1019J:4.97><1019J><£ j:3.1 eV

a1 i8I ¥ 2 5a U b S And) 5 5 0S0e V 0.7 z3e Jsh b Sl (5 a8 0 sledsist s 5
S

LI



renelates marin® B N .
M \
Atmosphere? Y J Y N
Fadiation Type Radio I'."Iir:,rr:rwave Infrﬂred ‘u’isihle Ultraviolet .‘-'{ rﬂyr Gﬂrnrnﬂ rﬂ1_.r
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Buildings Humans Butterflies Meedle Point Protozoans Maolecules Atoms  Atomic Nuclei
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Temperature of
objects at which
this radiation is the | )
mostintense " 1K 100K 10,000K 10,000,000 K
wavelength emitted ' - I,
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CLASS

Y
HX

SX

EUV
NUV
NIR
MIR
FIR
EHF
SHF
UHF
VHF
HF

MF

LF

VLF
VF/ULF
SLF
ELF

300 EHz
30 EHz
3 EHz
300 PHz
30 PHz
3 PHz
300 THz
30 TH=z
3 THz
300 GHz
30 GHz
3 GHz
300 MHz
30 MHz
3 MHz
300 kHz
30 kHz
3 kHz
300 Hz
30 Hz

3 Hz

FREQUENCY WAVELENGTH

1 pm
10 pm
100 pm
1 nm
10 nm
100 nm
1T um
10 pm
100 pm
1T mm
1cm

1 dm
Tm
10m
100 m
1 km
10 km
100 km
1T Mm
10 Mm

100 Mm

ENERGY
1.24 MeV
124 keV
12.4 keV
1.24 keV
124 eV
12.4 eV
1.24 eV
124 meV
12.4 meV
1.24 meV
124 peV
12.4 peV
1.24 peV
124 neV
12.4 neV
1.24 neV
124 peV
12.4 peV
1.24 peV
124 feV
12.4 feV

v = Gamma rays

HX = Hard X-rays

SX = Soft X-Rays

EUV = Extreme-ultraviolet

NUYV = Near-ultraviolet

Visible light (colored bands)

NIR = Near-infrared

MIR = Mid-infrared

FIR = Far-infrared

EHF = Extremely high frequency (microwaves)
SHF = Super-high frequency (microwaves)
UHF = Ultrahigh frequency (radio waves)
VHF = \ery high frequency (radio)

HF = High frequency (radio)

MF = Medium frequency (radio)

LF = Low frequency (radio)

VLF = Very low frequency (radio)

VF = \oice frequency

ULF = Ultra-low freguency (radio)

SLF = Super-low frequency (radio)

ELF = Extremely low frequency(radio) b
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Wave optics (se Sl

y = f(x =* vt) the general form of a traveling wave
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y = A sin (x — vr) periodic wave
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— (x—uvt)
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HARMONIC WAVES y = A Lo Jk(x * ovt)]

P
o T

x 1

r = constant X = constant

Because of this periodicity, increasing all x by A should reproduce the same wave.
Mathematically, the wave is reproduced because the argument of the sine function is
advanced by 2x. Symbolically,



Asin k[(x + A) + vt] = A sin [k(x + ot) + 2]
or
A sin (kx + kA + kot) = A sin (kx + kot + 2a71)

It follows that kA = 247, so that the propagation constant k contains information re-
garding the wavelength.

Asin k[x + v(t + T)] = A sin [k(x + o) + 2]
or
A sin (kx + kvt + koT) = A sin (kx + kot + 247)

Clearly, koT = 2, and we have an expression that relates the period T to the prop-

agation constant k and wave velocity v. The same information is included in the
relation

v =7A (8-5)

where we have used Eq. (8-4) together with the reciprocal relation between period T
and frequency v,

V:

1
T (8-6) 9
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A complex number Z is expressed as the sum of its real and imaginary parts,
Zz=a+ib (8-11)
where
a=Re(z) and b = Im (2)

are real numbers and : = V —1. The form of the complex number given by Eq.
(8-11) can also be cast into polar form. Referring to Figure 8-3, the complex num-
ber Z is represented in terms of its real and imaginary parts along the corresponding
axes. The magnitude of z, symbolized by |Z|, also called its absolute value or mod-
ulus, 1s given by the Pythagorean theorem as

15 = a® + b? (8-12)

> Re

11



Since from Figure 8-3,a = |Z| cos @ and b = | Z| sin 8, it is also possible to express

Z by
z = |z|(cos 8 + i sin 6)
The expression in parentheses is, by Euler’s formula,
e® = cos @ + isin 6

sO that

where

(8-13)

(8-14)

(8-15)
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Thus if Z = a + ib,
i*=a—ib or i*=|z|e" (8-16)

where the asterisk is used to denote the complex conjugate. A very useful minitheo-
rem is that the product of a complex number with its complex conjugate equals the
square of its absolute value. Using the polar form,

zz* = (|z|e®)|z]e”™) = |z (8-17)

Using Euler’s formula, it is possible to express a harmonic wave by
-)")' — Aei(kx—wt]
where
Re (y) = A cos (kx — wt)
and

Im (y) = A sin (kx — wt)

13



Y = Asin(k-r — wt) three-dimensional wave equation
1 &2 2 2 2
vy = — 2 ¥ v & &
v° Ot ox oy*  0z?

SPHERICAL WAVES

Spherical waves may also be represented by the harmonic wave equations developed for
plane waves, with one modification: The amplitude must be divided by the distance r to give

l,b - (é) ei(k-r—w!)
r

The spherical wave, as it propagates further from the source, decreases in amplitude, in contrast
to a plane wave for which amplitude is constant. y



ELECTROMAGNETIC WAVES E = Eje®ro

B = BO ei(k-r—mr)

E = c¢B

In free space, the velocity c is given by

C:

V €0 Jho

The energy density associated with the electric field in free space Is
Ue = 36 E?

and the energy density associated with the magnetic field in free space is

1
_Bz
Up — 2“0

15



U= gE* = (—-1-) B>

energy _ u AV _ u(Ac Ai)
At At At

powel‘ - = Uuc A

the power transferred per unit area, S, is

S = uc
u=\NuVu= (\/e_OE) (\f_) = \/GO_EB = €cEB
Ho €ojLo

S =ec’E X B

| = (|S]) = eocXEoBo sin® (K * r = wt))

I = Zeoc? Eo By

16
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Superposition of Waves

The resultant displacement is the sum of the separate displacements of the constituent waves:
Y=y +

The same principle can be stated more formally as follows. If ¥; and % are independently
solutions of the wave equation,

1 °y
V2§ =
l!j UZ atZ
then the linear combination,
l!/ _ al!/] + bl!/z

where g@and b are constants, 1s also a solution.

18



SUPERPOSITION OF WAVES OF THE SAME FREQUENCY

Electric field: E=Esn{k:- -r+ ot + ¢o)

where an initial phase angle ¢, is added for generality, we set k - r equal to a con-
stant because we wish to examine waves at a fixed point in space. Thus

FE = E, sin (w0t + «a) (9-2)
where the constant phase angle
C!=k'l'+q00 (9-3)

By the superposition principle, the resultant electric field Ey at the point is
Er = E, + E, = Ey, sin (wt + a;) + Eg; sin (wr + ay)
Using the trigonometric identity for the sum of two angles,
sin (A + B) =smnAcosB + cos A sin B
and recombining terms,

Er = (Ep cos a; + Eoz cos as) sin wt + (Ey; sin a; + Eg, sin a3) cos wt

19



~Eq, sin o,

~Egq sin o

(&) (b}

Eocosa = Ep cos a; + Eg cOS a;

and
Eo sin @« = Eg, sin oy + Eg; sin a3

In terms of the quantities E, and « defined by this graphical technique, Eq. (9-6) be-
comes

Er = Eo cos a sin wt + Ey sin « ¢cos wt
or

Er = Eo sin (wt + a) (9-7)

20



We conclude that the resultant wave £; is another harmonic wave of the same frequency o
with amplitude £, and phase «

E% . E%l + E%z + 2E01 EOZ COS (ag . Ct’l)
and from Figure 9-1b, the phase angle is clearly given by

E()] sin a; + E02 sin 7
E{)l COS «&; + Eoz COS &>

tan @ =

The diagram makes apparent the proper generalization of above Egs. for AV/such harmonic
waves:

2 E; + 2 Z Z EoEyj cos (a; — a;)

j>i i=1

D[ Sln a[

tan @ =

01 COS a;
21



1S s 1) )z se 93 0

E,~108in(10t+7) and  E, = 20sin(10t+ )

01 —02

E, =+/E,° +E,,> +2E, E,, cos(a, — ) = 102+202+2><10><20COS(%—%):29.09

. T /1
_ : 10sIn(—) + 20sIn(—
E,sin(a,) + Eg,sin(e,) _ U s’ =0.836

tan(a) = =
E01 COS(O(l) + Eoz COS(O(Z) 10 COS(Z) +20 Cos(z)

(o) =tan™(0.836) = 39.9°= 0.696 ™

E. =29.09sin(10t + 0.696)
22
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RANDOM AND COHERENT SOURCES

Z E; + 2 Z 2 EoEoj cos (o — a;)
j=i i=1
If phases are random, the phase differences are also random. The sum of cosine terms in Eq.
above then approaches zero as NV increases, because terms are equally divided between
positive and negative fractions ranging from — 1 to +1. This leaves

N
= > EZ = NE% = lz=N/I,
i=1

On the other hand, if the N/ sources are coherent, and in phase, so that all « are equal, then

N

N 2
E Z i + 2 Z Z EoEo; = (Z EOi) = (NEn)* = N?’E}, = IR = N* |0
i=1

= =i i=1

I Coh

for N i1dentical source: =N

inCoh
R 25




STANDING WAVES

a given wave exists in both forward and reverse directions along the same medium. This
condition occurs most frequently when the forward wave experiences a reflection at some
point along its path. In an ideal situation, none of the energy is lost on reflection nor absorbed

by the transmitting medium. This permits us to write both waves with the same amplitude.
Forward and reverse waves are, respectively.

E, = E, sin (kx — wt)
E, = Ey sin (kx + wt)
The resultant wave in the medium, by the principle of superposition, is
Erx = E, + E, = Ey [sin (kx + wt) + sin (kx — wt)]
Er = (2E, sin kx) cos wt

This 1s not a moving wave whereas, a standing wave. This shows a space-dependent

amplitude of an oscillation. 2’



There exist values of x where the amplitude of standing wave is zero for all £ these values

occur whenever:
sinkx =0, or kx=?=m¢r, m=20, 1, £2, ...
A A A A
X =2m(=)=m(—=)=0, —, A4, 3 —, ...
(4) (2) > 5

There exist also values of x where the amplitude of standing wave is maximum for all

these values occur whenever:

sin(kx ) =+1 = kx :MT)(: (2m +1)(%)
A, A A _A
X=2m+D)(—)=—,3—,5—,...
( )(4) 4 4 4

2]
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two waves with the same amplitude but differing in frequency and wave number be represented

E, = Eo cos (kix — wt)
E, = E, cos (kgx — (Uzt)

Er = 2F, cos [(k' * kZ)x 0 wZ)t] COS [(kl - kZ)x o~y t]

2 2 2 2
W+ w2 ki + k
wP_ 2 ’ kp= 2
w_wl—wg k:kl—kz
g 2 ’ £ 2

Erx = 2E, cos (kpx — wpt) cos (kex — w,t) 20
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Wy — W
Wp = 2wp = 2( 5 ) = w1 — w2 Beatl frequency

The overall effect is that the low-frequency wave serves as an envelope modulating the
high-frequency wave.

Phase and Group velocity

The velocity of the higher-frequency wave is then the phase velocity,

W, 0)1+(02 )
vp=_= —

k, k+k k

the velocity of the envelope, called the group velocity,

W, w —w dw

k, ki —k  dk

A
|
|
n

34



_ do _

d

v, = U, T+ k(%)

When the velocity of a wave does not depend on wavelength, that is, in a non-dispersive
medium, dv,/dk =0, and phase and group velocities are equal. This is the case of light

propagating in a vacuum, where Vp = Vg =c. In dispersive media, however, Vp = ¢ /n, where
the refractive index n1s a function of 4 or A Then n=n(k), and

Ug

P

- k {dn _ A [dn
”g‘”'”[“ﬁ(?z?c‘)] U = t| 1 n(d/\)]

In regions of normal dispersion, dn/dA < 0 and v, < v,.

35
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1.04 27 0.231°

n° =1+ +
A4-0.006 A°-0.02

1S s ) (Ge8) Sieasili Vev 5 () asili ¥z sa Jsha el 4y 51 U cae yu

1.04x0.4° 0.23x0.4°

N + =2.343=n =1.530
0.4*—0.006  0.42-0.02

A=04 um = n? =1

C 3x10°
n 1.53

V = =1.96x10° m/s

1.04x0.7¢ 0.23x0.7?

+ =2.292=n =1.514
0.72-0.006 0.7 -0.02

A=07 um = n’ =1+

8
¢ =3X10 =1.98x10° m/s
n 1.433 26




dn

dn
— =—-0.1331 um™
d . H

A=0.4 um d Z

vV =V 1+£(d—nj
) P n\dA
0.4

V,(1=04 um)=1.96x10° x[l—i—ﬁx(—o.l&%l)} =1.892x10° m/s

- —0.0266 um™

A=0.7 um

0.7
J (A=07 um)=1.98x10°x| 1+
o Hm) [ 1514

X (—0.0266)} =1.955x10° m /s
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It Is shown that for a given small angle

sind n__ .. . 6 n White light
: =——:1If 8 isvery samll = —+ = :
sing, n, 6. n 0 |
(erred _grblue)z(nB _nR) :
(Blue)
n, = ———reletive refractive index for Blue
ni ue
) (Red) _ _ _ Red
n, = ———reletive refractive index for Red
\ n (fed) Yellow
Blue

while the deviation of the D ray depends on
(ei . eryellow ) ~ (nY _1)
(erred _Hrblue) - (nB _nR)

(ei _erellow ) (nY _1)
aispersive powerand is defined by the equation 39

The ratio of these two quantities Is called the V =



=400 nm. n=1.5308
A=550 nm.: n=1.5185 Vi
=700 nm: n=15131

1.49

1.48

0.5

BKY7 glass

1 1.5

Wavelength, pm

~ 1.5308-1.5131
151851

RefractiveIndex IMNFO
BET
N-BK7 (5CHOTT)

r
r
L

=0.034

1.9

1.875

1.85

1.825

c 1.8

1.775

1.75

1.725

1.7

0.5

A=400 nm.: n=1.8454
A=550nm. n=1.7912
A=700nm: n=1.7718

v =0.093

RefractiveIndex IMNFO
5SF11
N-SF11 (5CHOTT)

SF11 glass

Wavelength, pm
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E= Eo exp(kz — a)t) Eo — EOXei¢X i + EOyei¢y j

Ap=¢,—¢,=0,7 linear polarization AP, = Fa= ;fj
E C < ¢ < € J c 7‘

T
p=0.~9, 2 circular polarization ( c = ox

T ) -
Ap=¢ —¢, =+— (- ) /
P=0=9, 2 elliptical polarization Er 2 ”5'//)

,,,///fd\/u/y_va/ <4
/%%’//J frEoe



— , N . ¢ ~ - _
AP-T - & = @-k c+ I+ E.a (cf. e 7] é(l(l “t)

(K2 -t +¢)
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SVRIIN c(KZ wb)
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E, (Incident wave) U))J G E, = C (e ﬂ
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E,, E, 6"

linear polarization: Ap=0

1 1 _ L —
E,=E, = : Jones vector for linearly polarized in x direction

. Jones vector for linearly polarized iny direction

_O_ _O_
‘o
1 1

1
E,=E, J linearly polarized in x -y plane with angle of 45 deg verusu to x axis
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circular polarization: A(p:%

1 1
E,=E, } = { } > Jones vector for left circularly polarized

1 1
E,=E, } :{ }: Jones vector for right circularly polarized
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Transmission axis horizontal

Linear polarizer ¢ Transmission axis vertical

Quarter-wave plate <

e

Half-wave plate {
or

Circular polarizer

Transmission axis at -+45°

Fast axis vertical

Fast axis horizontal

Fast axis at +45°

Fast axis either vertical

horizontal
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| Left
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: : 1 0|1 1 _ :
fast axis horisontal: {O }{}:L} left circularly polarized

_ _ 1 0|1 1 _ . :
fast axis vertical: {O H}:{ } right circularly polarized
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Orthogonal Polarization
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In terms of Jones vectors it is easy to verify that [’;1] and [’;2]
1 2

are orthogonal if

AIA;; +B],BZ =0
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Amplitudes of Reflected and Refracted Waves .

N

TE polarization:
All E -vectors normal

to xy plane
0

Y
]
E TM polarization:

/ ! All H vectors normal
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E | to xy plane
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Snel Law: sin(@) = nsin(¢)

internal reflection: n{(1=¢)6
- EER ' A Gl L s oyl
$=90": =6, =sin(f,)=n o E 0 B GRE L 53y

Qb Aaa 5 4 L Lhlie Cusliag gl 54S L4yl ) tas 4y )

Total Internal Reflection
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sin(@.) =n: 0)0. = sin(@))n :>\/n2 —sin®(0) =i \/sinz(é?)—nz

. _Cosf—i VsinZ 6 — n2

' cos @ +i VsinZ O — n2
. __—n?cos 0+ i VsinZ § — n?
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2
R :(n_—lj
n+1

2
External reflection: R = 32-11 _ 0.04 = 4% _
3/2+1 n=15
2/3_1 2 | 92% |0
Internal reflection: R = =0.04 =4% _— S S )
2/3+1
n=1 n=1

net reflection=4% + 4% = 8%
net transmision =100% -8% = 92%
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Brewster's angle
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sin(@ + ) tan(6 + ¢)
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Grazing incident s n elea Ly i (s

@ =90=-cos(f) =0, sin(0) =1
R, =R, =1
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Brewster's angle
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Brewster's angle

At normal incident (incident angle=0): R = 0.043996=4.4%,

’ , 1
Reflectance (at 0.4 ym) At Brewster’s angle i) — S-polarized RefractiveIndex.INFO
0.8 — P-polarized

RS =0.16146 (S-polarized) — non-polarized

Rp = 1.8892e-12 (p-polarized) :5 Vo BK?7 glass

R = 0.080731 (non-polarized, (Rg+Rp)2 ) 5 04
Reflection phase [i] 0.2

0 — —
¢S =-130.000° 0 10 20 30 40 50 60 70 80 90
¢P =-179.920° Angle of incidence, deg. =
g Al ) Dntoad oaull sandali 63 96A 2 50a () el For g0 Jsh

Brewster's angle [i]

ol S g 50 3 JalS o2l 55l 4S 358 o i o el e (ol 4,

6p = 56.846° 78



Brewster's angle

At normal incident (incident angle=0): R = 0.088278=8.8%

1

, .
Reflectance (at 0.4 pm) At Brewster’s angle [i] — S—polarized RefractiveIndex.INFO
0.8 = P-polarized

RS = (0.29806 (S-polarized) — non-polarized
- . S 06
RP = 1.2370e-8 (P-polarized) {Eu SF11 glass
R = 0.14903 (non-polarized, (Rs+Rp)2 ) g 04
Reflection phase [i] 0.2
G —
¢S =-180.000° 0 10 20 30 40 50 60 70 80 90
¢P = _'I 79936‘3 Angle of incidence, deg. -
s g prAgs) ) Dntoad o2l sandails 553960 2as () lesil Fov 2 e Jsh )0
Brewster's angle [i]

Sl Sg g ) JalSoandad g8 o) a8 39 e QUL ) a1 Al ol 44
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Interference of Light

Ei = Encos(ki-r —wt + ) Two waves with the same frequency traveling in

E; = Epcos(k: -r —wt + &) different direction when coming together in a point

At some general point P, defined by position vector r, the waves intersect to produce
a disturbance whose electric field E, is given by the principle of superposition,

Ep=E1+FQ

The irradiance measures the time average of the square of the wave amplitude.

I = ec (Ez)
Thus the resulting irradiance at P is given by

I = GOC(E;,{) . EOC(E,, . Ep) = €0C((E1 + Ez) : (E] + Ez))

or

I = ec(E} + E3 + 2E, - E,) 81



! = ec(Ei + E + 2E,-E,) =80C<E12>+80C<E22>+230C<E1-E2> =L+ 1,+1,

the first two terms correspond to the irradiances of the individual waves, / and /. The
last term depends on an interaction of the waves and is called the interference term, /,,

The presence of the third term /, Is indicative of the wave nature of light, which can
produce enhancement or diminution of the irradiance through interference.

Consider the interference term,
I;; = 2e0c{E, - E,)
where E, and E; are given by Egs. (10-1) and (10-2). Their dot product,
Ei-E:=Ey-Excos(k;r—wt +e)cos (ks - r — wt + &)

can be simplified by first expanding the cosine factors, interpreted as the difference
of two angles. To this end, let us define

a =k ‘r+e¢ and B=k'r+e 2



so that

El . Ez o EO] . Eoz COS (O.’ - (!)I) COS (B - (!)I)

Expanding and multiplying the cosine factors, we arrive at

(Ei - E;) = Eo1 - Eglcos a cos B{cos’ wt) + sin « sin B{( sin? wt)

where time averages are indicated for each time-dependent factor. Over any number

of complete cycles, one

and

Thus

(Ei - Ez) = 3Eo - Enp cos [(k; — K2) - ¢ + (&1 — €)]

8=(k|_k2)'r+(€|“‘€2)

+ (cos a sin B + sin a cos B){sin wt cos wt)]

can easily show that

W

(cos® wt) = 3, (sin® wt) =

(sin wt cos wt) = 0

(El . Ez) . %Eo] . Eoz COS (O.’ — ﬁ)

112 — €0CE01 ) E()z cos O
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21

Similarly, the irradiance terms /, and /I, I, = ec(E?) = j€cEf = E = L
gC
2 1 2 2| 2
I, = GOC(Ez) — 560CE02 = E02 =
In the case Eg, || E02 &,C
21, [21,
I]2=E(}CE01 'Egz COSS =& g gCCOS5=21/|1|2C055
0 0

I = I] + 12+ 2V1112C083

To be more specific, when cos 8 = + 1, constructive interference yields the
maximum irradiance N

On the other hand, when cos 6 = —1, destructive interference yields

the minimum, or background, irradiance

Lkin=51L+ 1L —2VLI 84



cancellation is complete, when I, = I, = I

l.x =4y, and [I.,, =0
I
A

— =1 + I, + 21,1,

(b)
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I max

fringe contrast, also called visibility.

min

fringe contrast =

Imax + Imin

whenl, = I,

Io
1 =1+ I + 2VT2 cos 8 = 2I,(1 + cos 8)

and then making use of the trigonometric identity

1 + cos & = 2 cos? (g)

The irradiance for two equal interfering beams is then

o
1 = 41, cos? (E)

Notice that energy is not conserved at each point of the superposition, that is,
1 # 21,, but that over at least one spatial period of the fringe pattern I, = 2lp. This
situation is typical of interference and diffraction phenomena: If the power density
falls below the average at some points, it rises above the average at other points in
such a way that the total pattern satisfies the principle of energy conservation.
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YOUNG’S DOUBLE-SLIT EXPERIMENT
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The condition for constructive interference at a point P on the screen is then, to a

very good approximation,

SzP_51P=A=mA = q sin @
whereas for destructive interference,

A=(@n+ L)\ =asin@

The result is

A

in 6
1 = 41, cos? (T) = 41, cos® (w)

A

For points P near the optical axis, where y <€ s, we may approximate further:

sin@ = tan 6 = y/s, so that

may

I = 41, cos? v
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2
m=+i
m+ 1 =
2
m=0,y=
1 _
m—- 4 =
2
m=-1
m— 1 -
2
m=-2
1 _
m— — =
2
m=-3
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Interference with Lloyd’s mirror.

Coherent sources are the point source § and its
virtual image, S’.

Screen
9]



‘ Interference with Fresnel’s mirrors.

Coherent sources are the two virtual images of point source S, formed in the two plane mirrors M, and M.

rect light from S is not allowed to reach the screen.

(1}

\"

(2)

92
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Interference with Fresnel’s biprism.‘

Coherent sources are the virtual images S, and S of source S, formed by refraction in the two halves of the prism.

a = 2dai{n-—1)
_ mX{d +5s)
" d- a = 2da(n - 1)

mA{d + s)
2doa{n — 1)

=
3
I

Q.
Y
A
/r
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INTERFERENCE IN DIELECTRIC FILMS

Figure 10-9 Double-beam interference from a
film. Rays reflected from the top and bottom
plane surfaces of the film are brought together
at P by a lens.

tt Transparent film

n, Substrate in the case of normal incidence

A = n(AB + BC) = n(21)

9



in the case of normal incident

the reflection coefficient (or ratio of reflected to incident electric fieldamplitude is given by

I —n
I +n

where the relative index n = ny/n;. The amplitudes of the electric field reflected in-
ternally and externally from the film of Figure 10-9 are then equal, assuming a non-
absorbing film, if the relative indices are equivalent for these cases, that is, if

n n /

1o Ny

r

Assuming n = 1.50 for the glass lens, ideally nr = V1.50 = 1.22.

nearest practical film material with a matching index is MgF,, with n = 1.38.
95



Returning now to the single-layer film, we want first to generalize the condi-
tions for constructive and destructive interference by calculating the optical path dif-

ference 1n the case incident rays are not normal.

A = n{AB + BC) — no(AD)

96



where nr and ny are the refractive indices of film and external medium, as shown. It
is helpful to break the distances AB and BC into parts, resulting in

A = [n(AE + FC) — nyAD] + n/(EB + BF) (10-27)
The quantity in square brackets vanishes, as we now show. By Snell’s law,
no sin 6; = nysin 6, (10-28)
In addition, by inspection,
A
AE = AG sin 6, = (TC)sin 0, (10-29)
and
AD = AC sin 6; (10-30)

From Eq. (10-29) and incorporating, in turn, Egs. (10-30) and (10-28),

2AE = AC sin 6, = AD (Sm 9‘) = AD (@)

sin 6, ny
so that
noAD = 2n;AE = n/{AE + FC) (10-31)
which was to be proved. There remains then, from Eq. (10-27),
A = n{EB + BF) = 2n:EB (10-32)

The length EB is related to the film thickness ¢ by EB = ¢ cos 6,, so we have,
finally,

A = 2nst cos 6, (10-33)
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The corresponding phase difference is & = kA =
(27r/X0) A. The net phase difference must also take into account possible phase dif-
ferences that arise on reflection, as discussed previously. Nevertheless, if we call A,
the optical path difference given by Eq. (10-33) and A, the equivalent path differ-
ence arising from phase change on reflection, we can state quite generally the condi-
tions for

constructive interference: A, + A, = mA

and
destructive interference: A, + A, = (m + 3)A

whete m=0,1,2, .. ..
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Optical Interferometry

An instrument designed to exploit the interference of light and the fringe patterns that result
from optical path differences, in any of a variety of ways, is called an optical interferometer.

Mirror M
THE MICHELSON INTERFEROMETER o
the optical path difference between the two \f
beams emerging from the interferometer is A _
Laser > >—< 3
=
A, = 2d cos 6 &
Beam Splitter v
where the angle 6 measures the inclination . v

of the beams relative to the optical axis. Screen
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E7 I'».f_[2
rotate

BS M,
] ¢ 3
translate
il — = lens

V-7
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Assuming that the two interfering beams are of equal amplitude, the irradiance of the fringe
system of circles concentric with the optical axis is given by

I = 41, cos? (g)

where the phase difference is

The net optical path difference is A = A, + A,, as usual. A relative 7r phase shift
between the two beams occurs because beam 2 experiences two external reflections

but beam 3 experiences only one.' For dark fringes, then,

AP+A,=2dcosﬁ+%=(m+%))t

or, more simply,

2d cos 0 = mA, m=0,1,2, ... dark fringes
101



If d'is of such magnitude that the normal rays forming the center of the fringe system that
IS, the center fringe Is dark, then its order, given by

2d

Mlmax — A

IS a larger integer. Neighboring dark fringes decrease in order outwards from the center of the
pattern, as cos(#) decreases from its maximum value of 1.

an increase in the angular separation 46 of a given small fringe interval Amas
the mirror spacing d becomes smaller, since AAm

|A9| A 2d sin 6

Equation below suggests an experimental way of either measuring A when Ad'is known or
calibrating the micrometer translation screw when A is known.

_2Ad
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Mach-Zehnder interferometer.

The incident beam of roughly parallel light is divided into two beams at beam splitter BS.
Each beam is again totally reflected by mirrors M1 and M 2, and the beams are made
coincident again by the semitransparent mirror AM3. Path lengths of beams 1 and 2 around
the rectangular system and through the glass of the beam splitters are identical.

A=nL-L=(n-1L

M1 - M3
> (1+2) 27
5:kA:7(n—1)L:m/1
27
— L(An) = A(Am)
L (4 N 4 (2) A
2
AN = A Am
2L

12
g ,7/6 pes n(p) = 5o Mo 1
BS L

M2
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Coherence

The term coherence is used to describe the correlation between phases of monochromatic
radiations. Beams with random phase relationships are, generally speaking, incoherent beams,
whereas beams with a constant phase relationship are coherent beams.

FOURIER ANALYSIS

When a number of harmonic waves of the same frequency are added together, even
though they differ in amplitude and phase, the result is again a harmonic wave of the
given frequency, as shown in Chapter 9. If the superposed waves differ in frequency
as well, the result is periodic but anharmonic and may assume an arbitrary shape,
such as that shown in Figure 12-1. An infinite variety of shapes may be synthesized
in this way. The inverse process of decomposition of a given waveform into its har-
monic components is called Fourier analysis.
F (2)
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If £(z) is a bounded function of period T then the Fourier series,

@) o9 (Aletie i f2) = 220; + D, a,cos mwt + 9, by, sinmot  (12-1)
m=1 m-1

In Eq. (12-1), m takes on integral values and w = 2af = 27 /T, where T is
the period of the arbitrary f(¢). The sine and cosine terms can be interpreted as har-
monic waves with amplitudes of b, and a.., respectively, and frequencies of mw.
The magnitudes of the coefficients or amplitudes determine the contribution each
harmonic wave makes to the resultant anharmonic waveform. If Eq. (12-1) is multi-
plied by dr and integrated over one period T, the sine and cosine integrals vanish,
and the result is

2 ot+T 2 p+T 2 to+T
do = — f() dt A, = T f(t) cos mwt dt b, = }j f(t) sin mot dt

{9 g Ip
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f(t)

1
_T r T
4 4 2

-

Figure 12-2 Square wave.

—— i~

As an example, consider the Fourier analysis of the square wave shown in Fig-
ure 12-2 and represented over a period symmetric with the origin by

0, -T/2<t1< —T/4
f@) =241, —T/4 <t <T/4

0, T/4<1<T/2
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Since the function is even in ¢, the coefficients b,, are found to vanish, and only

cosine terms (also even functions of ) remain. From Egs. (12-2) and (12-3), we
find

a0=1

2
am=(—-—)sin(m) P \Om:"
mir 2

so that the Fourier series that converges to the square wave of Figure 12-2 as more
terms are included in the summation is

(1) = = + E [(m) sin (mzw)] COs mwi

Writing out the first few terms explicitly,

1 2 1 |
= — — — + - oo
f(t) = 5 ﬂ_(cos wt — 7 cos 3wt 5 008 Swt )
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With the help of Euler’s equation, the Fourier series given in general by Eq.
(12-1). involving as it does both sine and cosine terms, can be expressed in complex
notation using exponential functions. The result is

f6)= 2 c.e ™ (12-5)
where now the coefficients
1 n+T
Ch = = f(t)e™" dt (12-6)

T

lo
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In cases where we wish instead to represent a nonperiodic function (cleverly
interpreted mathematically as a periodic function whose period T approaches
infinity), it is possible to generalize the Fourier series to a Fourier integral. For ex-
ample, a single pulse is a nonperiodic function but can be interpreted as a periodic
function whose period extends from ¢ = —o to t = +. It can be shown that the
discrete Fourier series now becomes an integral given by

fl) = j glw)e ™ dw (12-7)

where the coefficient

1.
(w CL M‘/ 9(“’) //M g (w) ——f f(t)e™" dt (12-8)

27 F(f) I , L
- -/j"} F&) pb o2 o l) 3 (w)
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FOURIER ANALYSIS OF A FINITE HARMONIC WAVE TRAIN
£(t) v
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IHF To > Figure 12-4 Finite harmonic wave train of
! | lifetime 7, and period 27r/wo. The spatial ex-
tension of the pulse is €, = c7o.
The wave train has a lifetime of 7o and a frequency of wo. ~w.f LL< T
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1 + oo 1 +70/2
— iwt — i{e —ewp)t dt
g (w) Y. f f(t)e™ dt om) €
o 70/2
. i — o)t +70/2
(w) = [ . ]
5 2mi(w — wo) o2
1 ei(w—wo}m/? — e—i(w—wo}roﬁ
glw) = 7 (e — wo)[ 2i ]
. i ) L) cl.l: Cod 7(4-[ Jin
after using the identity, — 0
e* — e ™ =2isinx
_sin [(7o/2)(w — wo)] 70 [sin [(70/2)(@w — wo)]
glw) = =
7 (w — wo) 2 | [(7o/2)(@ — wo)]
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. T
cul—]-rIBu glw) = E:_r glw) =0 when w = wo * 2:77
0

As w ncreases (or decreases) from wo then, g(w) passes periodically through zero.

Notice that the shorter the wave train of (the smaller the lifetime), the wider is the central
maximum. This means that the harmonic waves making important contributions to the actual
wave train span a greater frequency interval. We take the half-width of the central maximum,
or 271/7,, 10 Indicate In a rough way the range of dominant frequencies required.

- g{w)

lglw} 12
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a measure of the frequency band centered around a, required to represent the harmonic
wave train of frequency w, and lifetime z,,

Aw = 2T or Af = L] (12-15)

70 70
Equation (12-15) shows that if 70 — o, corresponding to a wave train of infinite
length, Aw — 0, and a single frequency w, or wavelength A, suffices to represent the
wave train. In this idealized case we have a perfectly monochromatic beam, as con-
sidered previously. On the other hand, as 70 — 0, approximating a harmonic
“spike,” Aw — . Thus the sharper or narrower the pulse, the greater is the number

of frequencies required to represent it, and so the greater the line width, or A\, of
the harmonic wave package.
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TEMPORAL COHERENCE AND NATURAL LINE WIDTH

Clearly, there are no perfectly monochromatic sources. Sources we call
“monochromatic” emit light that can be represented as a sequence of harmonic wave
trains of finite length, as suggested in Figure 12-6, each separated from the others
by a discontinuous change in phase. These phase changes reflect the erratic process
by which excited atoms in a light source undergo transitions between energy levels,
producing brief and random radiation wave trains. A given source can be character-
1zed by an average wave train lifetime 7o, called its coherence time. Thus the physi-
cal implications of Eq. (12-15) may be summarized as follows: The natural width of
a spectral line is inversely proportional to the coherence time of the source. The
greater its coherence time, the more monochromatic the source. The coherence
length 1, of a wavetrain is the length of its coherent pulse, or

l; — CTo (12-16)
Combining Egs. (12-15) and (12-16), the coherence length is

I, = —

Af
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Then, approximating Af by the magnitude of its differential from the expression
f = ¢/A, we may also write

AZ
[, = — 12-17
N (12-17)
Thus the natural line width is
- Az
AX = l_ (12-18)

Figure 12-6 Sequence of harmonic wavetrains of varying finite lengths or life-
times 7. The wavetrain may be characterized by an average lifetime, the coherence
time 7, 0.
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Since the line width of spectral sources can be measured, average coherence
times and coherent lengths my be surmised. White light, for example, has a “line
width” of around 300 nm, extending roughly from 400 to 700 nm. Taking the aver-
age wavelength at 550 nm, Eq. (12-17) gives

_ 5507
300

I, = 1000 nm = 2\,

a very small coherence length indeed, of around a millionth of a centimeter or two
“wavelengths” of white light. Understandably, interference fringes by white light are
difficult to obtain since the difference in the path lengths of the interfering beams
should not be greater than the coherence length for the light. Sodium or mercury
gas-discharge lamp sources are far more monochromatic and coherent. For example,
the green line of mercury at 546 nm may have a line width of around 0.025 nm, giv-
ing a coherence length of 1.2 cm. One of the most monochromatic gas-discharge
sources is a gas of the krypton 86 isotope, whose orange emission line at 606 nm has
a line width of only 0.00047 nm. The coherence length of this radiation, by Eq.
(12-17), 1s 78 cm! Laser radiation has far surpassed even the coherence of this gas-
discharge source. The short-term stability of commercially available CO, lasers, for
example, is such that line widths of around 1 X 107> nm are attainable at the in-
frared emission wavelength of 10.6 um. These numbers give a coherence length of

around 11 km.
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SPATIAL COHERENCE

In speaking of temporal coherence, we have been considering the correlation in
phase between temporally distinct points of the radiation field of a source along its
line of propagation. For this reason, temporal coherence is also called longitudinal
coherence. The degree of coherence can be observed by examining the interference
fringe contrast in an amplitude-splitting instrument, such as the Michelson interfer-
ometer. As we have seen, temporal coherence is a measure of the average length of
the constituent harmonic waves, which depends on the radiation properties of the
source. In contrast, we now turn our attention to what is referred to as spatial, or
lateral, coherence, the correlation in phase between spatially distinct points of the
radiation field. This type of coherence is important when using a wavefront-splitting
interferometer, such as the double slit. The quality of the interference pattern in the
double-slit experiment depends on the degree of coherence between distinct regions
of the wave field at the two slits.
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DIFFRACTION FROM A SINGLE SLIT

For Fraunhofer diffraction, the source must be far enough away so that the wavefronts of light
reaching the slit are essentially plane. Of course, this is easily accomplished in practice by
placing the source in the focal plane of a positive lens. Similarly, we consider the observation
screen to be effectively at infinity by using another lens on the other side of the slit,

A

>
|
|
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The plane portion of the wavefront at the slit opening represents a continuous
array of Huygens’ wavelet sources. We consider each interval of dimension ds as a
source and calculate the result of all such sources by integrating over the entire slit
width b. Each interval ds contributes spherical wavelets at P of the form

dEp . (_c_i__E_O)ei(kr—mfj

r

where r 1s the optical path length from the interval ds to the point P.

Let us set 7= r; for the wave from the interval dsat s= 0. Then for any other wave
originating at the interval dsat height s, taking the difference in phase into account, the
differential field at P is

dEs

e ilk(rg+A)—wt]
r

e,
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In the amplitude, dEo/(ro + A), the path difference A is unimportant, since A < ro,
and therefore A can be neglected there. The phase, on the other hand, is very sensi-
tive to small differences. For intervals ds below the axis, s is negative and the path
difference is (ro — A), corresponding to shorter optical paths to P. The amplitude of
the radiation from each interval clearly depends on the size of ds, so that when all

such contributions are added by integration, we have the total effect at P. Accord-
ingly, we write

dE{) s EL ds

where E, is the amplitude per unit width of sht at unit distance away. For a point P
at angle 6 below the axis, relative to the lens center, the figure shows that A =

s sin 6. With these modifications, the differential contribution to the field at P from
an arbitrary interval ds is

EL ds

Fo

dEP=(

) ei(krg+ks siné —ewt)
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Integrating over the width of the slit, we have

E b/2
EP — (_‘E“[ eik.ssinﬁ ds)ei(krgmt)

r
0 J 412

we retain only the portion in parentheses and integrate:

E _ EL eikssinﬂ b/2 |:> ER _ EL 1 [e(ikbsinﬁl/Z _ e—(ikbsinﬁ)/z]
* " ro \ik sin 6 ro itk sin 6
—b/2
B = 3kb sin 6
EL b B __B EL b . . ELb Sin B
= wp t — 2 E —_—
Er - 2iﬁ(€ e ) N 2fB( i sin B) === Lp o P
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The irradiance at P is proportional to the square of the resultant amplitude

there, or
] = (606') ER _ G{)C(ELb)z sinz B
2 2 ro BZ

p—0

lim sinc () = Jrlslm(sin ﬁ) -

Otherwise, its zeros occur when sin 8 = 0, that is, when

B = 3(kb sin 6) = mir, withm = 1, 2, . . .

mA = b sin 8
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On the screen, therefore, the irradiance is a maximum at & = 0 or y = 0 and drops
to zero at values y such that
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The secondary maxima of the single-slit diffraction pattern do not quite fall at
the midpoints between zeros, even though this condition is more nearly approached
as f increases. The maxima coincide with maxima of the sinc function, points satis-

fying

d (simfB\ PcosB —sinf .
dB(B)_ e =0 orf3 = tan

or B = tan . An angle equals its tangent at intersections of the curves y = 8 and
y = tan 8, both plotted in Figure 16-3. Intersections, excluding 8 = 0, occur at
1.43r (rather than 1.577), 2.46 (rather than 2.577), 3.474 (rather than 3.57), and
SO on, as can be verified with a hand calculator. The plot clearly shows that intersec-
tion points aproach the vertical lines defining midpoints more closely as 8 increases.
Thus, in the irradiance plot of Figure 16-2, secondary maxima are skewed slightly
away from the midpoints toward the central peak. Most of the energy of the diffrac-
tion pattern falls under the central maximum, which is much larger than the adjoin-

Ing maximum on either side. 129
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tan B determine the an-

B and y =

Intersections of the curves y

gles B at which the sinc function is a maximum.

Figure 16-3



The central maximum represents essentially the image of the slit on a distant
screen. We observe that the edges of the image are not sharp but reveal a series of
maxima and minima that tail off into the shadow surroudning the image. These ef-
fects are typical of the blurring of images due to diffraction and will be seen again in
other cases of diffraction to be considered. The angular width of the central maxi-
mum is defined as the angle A6 between the first minima on either side. Using Eq.
(16-12) with m = =1 and approximating sin @ by @, we get

2A
M_b

Ay =D = 221 Diameter of the central peak
b

The beam diameter cannot be smaller than the limit applied by the relation above. This limit is

called “diffraction limit”
13]



Example

What is the ratio of irradiances at central peak maximum to the first of the
secondary maxima?

Solution The ratio to be calculated is

Ip=o _ _(sin® B/B*p=0 _ 1
Ig—1 437 (sin2 B / BZ)B=I-431T (Siﬂ2 B / Bz)ﬁ=l.437r
B Bz ~20.18
- (sin2 B)._m = 0952 12

Thus the maximum irradiance of the nearest secondary peak is only 4.7% that
of the central peak.
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