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Abstract 

This dissertation consists of three parts; analytical calculations, numerical calculation and 
experimental measurements. In the section Analytical Calculations, the properties of Gaussian 
laser beams are outlined. Then, the propagation of a Gaussian beam through free space in the 
limit of the Fresnel- and Fraunhofer diffraction theory is presented. The Z-scan technique, as a 
sensitive method for measuring nonlinearities, is explained. For the case of the closed aperture 
Z-scan geometry, in which the phase distortion results in the amplitude modulation, the 
transmittance through a small aperture located in the far field has been derived. The normalized 
transmittance has been calculated assuming different types and orders of nonlinear processes 
such as third order nonlinearity at the absence of 2PA, third order nonlinearity at the presence of 
2PA, fifth order nonlinearity at the absence of 3PA, fifth order nonlinearity at the presence of 
3PA, concurrent third and fifth order nonlinearity at the absence of 2PA and 3PA, concurrent 
third and fifth order nonlinearity at the presence of 2PA and third order nonlinearity at the 
absence of 2PA assuming an elliptical Gaussian laser beam. 

In the case of open aperture Z-scan geometry, the entire energy transmitted through the nonlinear 
medium is collected. The normalized transmittance assuming the following different order of 
nonlinearity has been calculated: 2PA as a third order nonlinear absorption using a circular 
Gaussian beam, 2PA as a third order nonlinear absorption using an elliptical Gaussian beam and 
3PA as a fifth order nonlinear absorption using a circular Gaussian beam. 

In the numerical calculation part some integrals, whose analytically evaluation is not possible, 
have been determined numerically. Then the numerical calculation results have been compared 
with analytical calculation results obtained in an approximation domain in which analytical 
calculation is allowed to be carried out. 

In the main, experimental section of the thesis, results of open aperture Z-scan measurements to 
determine the 2PA and 3PA coefficients of different types of samples are presented. Three 
different type of samples for different purposes have been investigated: Two-photon initiators 
synthesized in the chemistry institute in order to be used in two-photon induced polymerization 
applications, Metal glass composites prepared at the Nuclear Physics Institute in Prague, Czech 
Republic, employing ion implantation method and a grafting compound with the commercial 
name of BAC-M for photo-grafting applications for immobilizing some molecules inside the 
volume of a polymer matrix. 

Ultimately, some 3D microstructures were successfully created via both two-photon 
polymerization and three-photon grafting. 
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Kurzfassung 

Diese Arbeit besteht aus drei Teilen: Analytische Berechnungen, Numerische Auswertungen und 
Experimentelle Ergebnisse. Im Rahmen der analytischen Berechnungen werden zuerst die 
Eigenschaften eines Gauß´schen Strahls im Detail besprochen. Im weiteren wird die Näherung 
der Fresnel und Frauenhofer Beugung zur Ausbreitung eines Gauß´schen Strahls verwendet. Im 
Folgenden wird die Z-scan Technik zur Messung von nichtlinearen Größen ausführlich 
behandelt.  

Für den Fall der „closed aperture Z-scan“ – Methode (die Phasenänderung bewirkt hier eine 
Amplitudenänderung) wird die Transmission durch eine kleine Öffnung im Fernfeld detailliert 
berechnet. Genaue Ableitungen wurden für die normalisierte Transmission für folgende Fälle 
durchgeführt: Existenz einer Nichtlinearität der dritten Ordnung  ohne Zweiphotonenabsorbtion, 
Existenz einer Nichtlinearität der dritten Ordnung  mit gleichzeitiger Zweiphotonenabsorbtion, 
Existenz einer Nichtlinearität der fünften Ordnung  ohne Dreiphotonenabsorbtion, Existenz einer 
Nichtlinearität der fünften Ordnung  bei gleichzeitiger Dreiphotonenabsorbtion, Existenz einer 
Nichtlinearität der dritten und fünften Ordnung  ohne Zwei- und Dreiphotonenabsorbtion, 
Existenz einer Nichtlinearität der dritten und fünften Ordnung  mit Zwei- und 
Dreiphotonenabsorbtion für einen elliptischen Gaußstrahl. 

Im Fall der „open-Aperture“ Anordnung wird die gesamte Energie, die durch das nichtlineare 
Medium transmittiert wird registriert. Berechnungen wurden für folgende Fälle durchgeführt: 
Zweiphotonenansorption (Nichtlinearität dritter Ordnung) unter der Annahme  eines kreisrunden 
Gaußstrahles, Zweiphotonenansorption (Nichtlinearität dritter Ordnung) unter der Annahme  
eines elliptischen Gaußstrahles und Dreiphotonenansorption (Nichtlinearität fünfter Ordnung) 
unter der Annahme  eines kreisrunden Gaußstrahles. 

Im zweiten Abschnitt wurden einigem analytisch nicht berechenbare Integrale numerisch 
ausgewertet. Die Ergebnisse wurden dann mit analytischen Ergebnissen, für die im Grenzfall 
Lösungen existieren überprüft. 

Im experimentellen Teil werden die Ergebnisse für drei verschiedene Probentypen präsentiert. 
Dabei wurden die Zwei- und Dreiphotonenabsorbtionsquerschnitte ermittelt und die Ergebnisse 
präsentiert und dikuttiert. Diese verschiedenen Probentypen stellen jeweils andere, spezielle 
experimentelle Anforderungen an die Z-scan Methode. Die Gruppen sind: Zweiphotonen-
Initiatoren (entwickelt am Chemieinstitut der TU Wien) für den Einsatz in 
Zweiphotonenpolimerisationanwendungen; Metall-Glas-Composites hergestellt mit 
Ionenimplantation am Institut für Kernphysik in Prag; ein Material für Photo-grafting (BAC-M) 
für 3D Photo-grafting Anwendungen. 

Schließlich wurden einige 3D-Mikrostrukturen mittels Zweiphotonenpolymerisation sowie 
Dreiphotonen-Grafting erzeugt. 
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Chapter 1  

1. Introduction 

1.1.     Motivation and goals 
Material modification exploiting nonlinear absorption became practicable after the advent of 
pulsed lasers and its realzation is a consequence of the realization of high peak power ultrashort 
pulses emitted by femtolasers. This field of research has attracted much interest and has found 
many practical applications such as two-photon induced polymerization (2PIP), 3D optical data 
storage and many more. Due to the intensity-dependent nature of nonlinear absorption, any 
physical or chemical property change via nonlinear absorption can be created within the bulk of 
transparent materials with a structural resolution beyond the diffraction limit.          

2PA in molecular systems using near infrared ultrashort pulsed laser radiation has attracted much 
attention of researchers so that they have put much emphasis on designing and synthesizing 
organic molecules with significantly higher 2PA cross sections than in common materials. 
Several different experimental techniques can be employed to measure 2PA cross sections 
among them the Z-scan technique is a particularly sensitive technique and also very easy to 
perform. This technique relies on the transformation of phase distortion to amplitude distortion 
during beam propagation through a nonlinear medium. 

In this dissertation, in the first part the subject is the analytical calculation of the normalized 
transmittance through a nonlinear medium in at the presence a 2PA, 3PA or concurrence of both 
order of nonlinearity. The second part deals with Z-scan results for a series of newly synthesized 
two-photon initiators (2PIs) are presented and ultimately the numerical calculations for 
prediction of Z-scan results are compared with the experimental results.  

1.2.     Nonlinear Optics 
When a physical oscillating system such as a dipole momentum is overdriven it will exhibit a 
nonlinear response. an optical nonlinear response can occur when materials are illuminated by 
high enough intense radiation such those emitted by pulsed lasers [1, 2]. The nonlinearity can be 
expressed by the polarization of the material which is often written as a power series expansion 
of the total applied optical field. 
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In the low intensity regime, when the second and higher order terms in the above equation are 
negligible, the polarization depends linearly on the applied electric field strength. An area of 
classical optics dealing with low intensity regime is named linear optics due to the linearity 
dependence of polarization on the driving electric field strength.  The concept of nonlinear optics 
is derived from the fact that for the high intensity regime the polarization no longer changes 
linearly with the applied electric field but changes nonlinearly because the second or higher 
order terms in Eq.  (1.1) become comparable with the first term.  

In the above power series expansion, the first order or linear susceptibility χ(1) is responsible for 
the refractive index and linear (one photon) absorption. The second order susceptibility χ(2)  
(which is non-zero only for thoses crystals which have no inversion symmetry) is responsible for 
nonlinearities such as second harmonic generation, sum frequency and difference frequency 
generation. In general, the optical susceptibility is a tensor resulting in the linear susceptibility 
χ(1) as a second-rank tensor, the second order susceptibility χ(2) as a third-rank tensor and so on. 

1.3.     Third order optical nonlinearity  
Third-order optical nonlinearities involve the nonlinear susceptibility four-rank tensor χ(3)  in 
(1.1) which is non-zero in all material. The typical values for χ(3) are orders of magnitude smaller 
than χ(2) coefficients. Third-order susceptibility governs many phenomena such as third harmonic 
generation, Coherent Stokes and anti-Stokes Raman scattering, frequency mixing, optical Kerr 
effect and two-photon absorption. The term involving E3 in Eq.  (1.1) implies that three optical 
fields interact to produce a fourth field. The χ(3) interaction is thus a four-photon process [3].  

In general, the applied electric field can be written as a summation of electric fields of three 
beams where each beam has a different frequency ω.  

 
 ( )1 32

1 2 3
1 .
2

i t i ti tE E e E e E e c cω ωω− −−= + + + (1.2)  

For the sake of simplicity, a special case is considered when a linear polarized electric field is 

traveling through an isotropic medium. In this case, the polarization inside the subjected medium 

is induced only in the direction of the applied electric field.  
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The nonlinear polarization resulting from the χ(3)
 interaction leads to a total of 108 terms 

involving all possible permutations of the fields with three frequencies [2].  

Ignoring the χ(1)
  and χ(2) components in Eq.  (1.1), the nonlinear polarization as a source of 

radiation emmites light at new generated frequency as 3ω1, 3ω2, 3ω3, 2ω1+ω2, 2ω1+ω3,  2ω2+ω1, 
2ω2+ω3, 2ω3+ω1, 2ω3+ω2, 2ω1-ω2,  2ω1-ω3,  2ω2-ω1, 2ω2-ω3, 2ω3-ω1, 2ω3-ω2, ω1+ω2+ω3, ω1+ω2-

ω3, ω1-ω2+ω3, -ω1+ω2+ω3, ω1-ω2-ω3, -ω1+ω2-ω3, -ω1-ω2+ω3, ω1, ω2, ω3.   
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(1.3)  

  

 The existence of 108 terms does not mean there are as many distinct mechanisms involved. For 

instance, three terms give ω4 = 3ωi, for i = 1, 2, 3, describing exactly the same process of third-

harmonic generation (THG). Furthermore, THG is a special case of sum frequency generation 

(SFG) involving one, two, or three different frequencies giving ω4 = ωi+ωj+ωk, i, j, k= 1, 2, 3 

accounting for 27 terms. If only two distinguishable laser beams are available, the number of 

permutations decreases to 48. 
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Table 1. Frequencies and amplitudes for different nonlinear response arising from third-order 
nonlinear polarization 

Type of Nonlinear Process Amplitude of each process New generated frequencies

Third harmonic generation 
(THG) 

 

3 1,2,3jE j =  1 2 33 , 3 , 3ω ω ω  

Sum frequency generation 
(SFG) 

 

23 , 1,2,3i jE E i j i j= ≠  

1 2 36 E E E  

1 2 1 3

2 1 2 3

3 1 3 2

2 , 2

2 , 2

2 , 2

ω ω ω ω

ω ω ω ω

ω ω ω ω

+ +

+ +

+ +

 

1 2 3ω ω ω+ +  

Frequency mixing 

Parametric amplification 
23 , 1,2,3i jE E i j i j∗ = ≠  

1 2 1 3

2 1 2 3

3 1 3 2

2 , 2

2 , 2

2 , 2

ω ω ω ω

ω ω ω ω

ω ω ω ω

− −

− −

− −

 

Coherent Stokes Raman 
scattering 

6 , , 1,2,3i j kE E E i j k i j k∗ = ≠ ≠  
1 2 3

1 2 3

1 2 3

ω ω ω

ω ω ω

ω ω ω

+ −

− +

− + +

 

Coherent anti-Stokes 
Raman scattering     

6 , , 1,2,3i j kE E E i j k i j k∗ ∗ = ≠ ≠  
1 2 3

1 2 3

1 2 3

ω ω ω

ω ω ω

ω ω ω

− −

− − +

− + −

 

Bound electronic optical 
Kerr effect 

Raman induced Kerr effect 
(RIKE) 

23 1, 2,3i iE E i∗ =  1 2 3, ,ω ω ω  

Molecular orientation Kerr 
effect 

Two-photon absorption 
(2PA) 

6 , 1,2,3i j jE E E i j i j∗ = ≠  1 2 3, ,ω ω ω  
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When the system is driven by a single monochromatic light beam, the third-order nonlinear 
response involves only four terms corresponding to three involved mechanisms.  

 ( )
3

2(3) (3) (3) 3 (3 )
0 0

1 1( . .) 3 . .
2 8
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(1.4)  

The first term in Eq.  (1.4) indicates the third harmonic generation and the second term describes 
the Kerr effect and two-photon absorption (2PA) which are explained briefly below. 

1.3.1.     Third harmonic generation 

Third harmonic generation is a nonlinear optical response in which three photons of frequency ω 
are annihilated and one photon of frequency 3ω is created. This is a parametric process in which 
the photon energies are conserved. The efficiency of this process depends on the strength of the 
real part of the third order susceptibility. 

 

 

Fig.  1.1 Energy-level description for third-harmonic generation 

1.3.2.     Kerr effect 

The second term in Eq.  (1.4) describes the contribution of the third order nonlinearity to the 
induced polarization oscillating at the frequency of the incident field. Therefore, the total 
induced polarization oscillating at the frequency of the driven electric field can be written as 

 2 2(1) (3) (1) (3)
0 0

3 3( ) ( cos( ) cos( )) ( ) cos( )
4 4

P E E E E Eω ε χ ω χ ω ε χ χ ω= + = +  (1.5)  

The effective susceptibility now, compared to the linear regime, contains an additional term 
proportional to the light intensity square given by 
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 2(1) (1) (3)3
4eff Eχ χ χ= +  (1.6)  

Since the real and imaginary components of the linear susceptibility χ(1) are associated with 
refraction and absorption, the refraction index and absorption coefficient are no longer constant 
but they depend linearly on the light intensity, which will be described in greater details in 
section 2.3.  The χ(3) process resulting in an intensity-dependent refractive index is known as the 
Optical Kerr Effect (OKE). 

  0 2( )n I n n I= +   (1.7)  

where n0 is the linear refractive index and n2 is the third order refractive index. Any variation in 
the intensity distribution, whether spatially or temporally, will cause a corresponding change in 
the refractive index. For instance, a Gaussian-like spatially-varying intensity distribution gives 
rise to self-lensing (Kerr lens), which results in self-focusing (for positive n2) or self-defocusing 
(for negative n2). Also a Gaussian-like temporally-varying intensity distribution will result in a 
time-dependent refractive index leading to self-phase modulation, which introduces chirp to a 
non-chirped pulse. In such a chirped pulse, the frequency is no longer constant over the pulse 
duration but it increases or decreases corresponding to the positive or negative sign of n2. This 
means that the longer wavelengths arrive earlier and shorter wavelengths arrive later assuming a 
positive sign for n2 and vice versa.  The time-dependent frequency of a chirped pulse can be 
written as 

 
0 2

( ) 2 ( )( ) t I tt n z
t t

ϕ πω ω
λ

∂ ∂
= = −

∂ ∂
 (1.8)  

It is worth mentioning that in regions of anomalous dispersion the longer wavelengths 
experiences higher refive index thus, the redder portions of the pulse have a lower velocity than 
the blue portions. Therefore, the front of the self-phase modulated pulse moves slower than the 
back. This effect can be exploited to some degree to compensate the effect of self-phase 
modulation in order to produce ultrashort pulse.  

1.3.3.     Two-photon absorption 

Two-photon absorption is a third order optical nonlinear process in which two photons (not 
necessarily at the same frequency) are simultaneously absorbed to excite a molecule from ground 
state to a real excited state through a virtual state as shown in Fig.  1.2. The first photon makes a 
virtual transition to a nonexistent state between the upper and lower levels. If the second photon 
arrives within the lifetime of that virtual state, the absorption sequence to the upper state can be 
completed. If not, the virtual state collapses back to the ground state, and no absorption takes 
place [2]. Therefore, the 2PA probability depends on both the lifetime of the virtual state and 
photon fluxes. The lifetime of the virtual state is proportional to 1/ΔE, where ΔE is the difference 
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energy between the virtual state and the nearest real state. Therefore, the 2PA probability 
increases dramatically when the frequency of applied field approaches the resonant frequency of 
a molecular system. In addition, the dependence of the 2PA probability on the photon flux 
suggests using a tightly focused laser beam to increase the probability of 2PA [4]. 2PA is 
observed in a spectral range where the material is normally transparent. 

The refractive index and the absorption coefficient are related to the real and imaginary parts of 
the susceptibility. Hence, a linear dependence on the intensity of the absorption coefficient can 
be introduced analogous to the intensity dependence of the refractive index in Eq.  (1.7).  

 0 2( )I Iα α α= +  
(1.9)  

where α0 is the linear absorption coefficient and α2 is the 2PA coefficient. The relation between 
the refractive index and the real part of the susceptibility as well as between the absorption 
coefficient and the imaginary part of susceptibility will be calculated in section 2.3 in more 
detail.  

 

 

Fig.  1.2 Two-photon absorption 

One should notice the difference between the two-photon absorption and second harmonic 
generation, while in both cases two photons simultaneously “disappear”. Two-photon absorption 
described above may result in emitting a photon at a frequency greater than ω and lower than 
2ω, which is referred to as up-converted emission. As seen in Fig.  1.3 (A), absorption of two 
photons makes the transition from state “a” to state “b”. The upper energy level “b” then relaxes 
to the real state “c” without emitting any photon and ultimately relaxes back to the ground state, 
emitting a photon at higher frequency than that of exciting field. Second harmonic generation is 
a second order optical nonlinear process in which two photons at frequency ω are annihilated 
and one photon at frequency 2ω is created.  As shown in Fig. 1.3 (B), two photons make the 
transition to a virtual state. The virtual state immediately collapses back to the ground state, 
emitting a photon at a frequency twice of that of the exciting field. In summary, two-photon 
absorption is a resonant process, whereas second harmonic generation is a non-resonance 
process. In a resonant process, the lifetime of the excited state is much longer than the lifetime of 
the virtual state in a non-resonant process. Therefore, the emitted photon after two-photon 
absorption is no longer coherent with the incident optical field, whereas the second harmonic 
generated photon is coherent with the incident optical field [5]. 
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Fig.  1.3 (a) indicates two-photon absorption and the following up-converted emissionand (b) shows second 

harmonic generation 

1.4.     Fifth order nonlinearity 
Fifth order nonlinearity is described with χ(5) in the power series expansion in Eq.  (1.1). An 
example for χ(5) interactions is 3PA, which is an optical nonlinear process, by which the energy 
gap between two real states is bridged through the simultaneous absorption of three photons, not 
necessarily at the same frequency. Not only one photon but even two photons together have 
sufficient energy to complete the transition alone; 3PA is thus observed in the spectral range 
where the material is completely transparent. Fig.  1.4 shows energy level description of three-
photon absorption containing two virtual states through which the ground state is bridged to the 
first real excited state. The probability for a three-photon absorption process is much less than 
the probability for a two-photon absorption process. A much higher intensity is required for a 
three-photon absorption process to take place, since three photons must be absorbed within a 
very short time interval, requiring a higher rate of photon flux. In both three-photon absorption 
and third harmonic generation, three photons “disappear”. It should be noted that a three-photon 
absorption process is a resonant process that may results in emission of one photon of higher 
energy. This photon is not coherent with the incident optical field, whereas third harmonic 
generation is a non-resonant process resulting in emission of one photon, which is coherent with 
the incident optical field with an energy three times the energy of either of the incident photons.  

 

 

Fig.  1.4 Energy level description of three-photon absorption 



9 

 

1.5.     Nonlinear absorption measurements 
Nonlinear absorption coefficients such as 2PA coefficients (cross section), 3PA coefficients, etc. 
can be measured applying a number of different methods, which are described below. 

1.5.1.     Nonlinear transmission  

In this technique, the sample is mounted at the focal point of a focused laser beam and the energy 
transmitted through the sample is measured as a function of input energy [6]. Fig.  1.5 shows the 
outline of the experimental setup used in this technique.  

 

 

Fig.  1.5. Experimental setup for nonlinear transmission technique 

According to basic theoretical considerations, if a CW laser beam has a spatially Gaussian 
intensity distribution in the medium, the normalized transmittance caused by 2PA (regardless of 
1PA) can be expressed as 

 2 0
0

2 0

ln (1 )
( )

L I
T I

L I
α

α
+

=  
(1.10)  

In Eq.  (1.10) I0 is the incident intensity, L the thickness of a given sample, and α2  the 2PA 
coefficient of a given 2PA medium (from  (1.9)). Fig.  1.5 shows the normalized transmittance as 
a function of incident intensity given by Eq.  (1.10). 
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Fig.  1.6  Normalized transmittance given by Eq.  (1.10) 

1.5.2.     Up-converted fluorescence emission 

Many organic molecules exhibit up-converted emission as a major mechanism for returning to 
the ground state. This process derives its name from the molecule in the excited state returning to 
the ground state via the emission of one photon of shorter wavelength (higher energy) than either 
of the two initially absorbed photons. This apparent conversion of light at a longer wavelength to 
light at a shorter wavelength is called up-conversion [5].  

To determine the nonlinear absorption cross section, the intensity of up-converted fluorescence 
emission can be measured as a function of incident intensity. The dependence of fluorescence 
intensity on the excitation intensity determines the order or nonlinearity. A quadratic dependence 
as shown in Fig.  1.8 (a) is an indication of two-photon absorption process [7] whereas a cubic 
dependence as shown in Fig.  1.8 (b) corresponds to three-photon absorption [8].  

 

 

Fig.  1.7 A schematic of up-converted fluorescence emission technique 
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Fig.  1.8 Quadratic dependence of up-converted fluorescence intensity (a) and Cubic dependence of the up-converted 

fluorescence intensity (b) on the input intensity 

1.5.3.     Transient absorption (pump-probe experiment)  

In this technique the absorption of a lower intensity beam (probe beam) is measured at the 
presence of a stronger intensity beam (pump beam) as a function of time delay between pump 
and probe pulses [9].  

Fig.  1.9 shows a schematic setup for this experiment. A laser beam consisting of ultrashort laser 
pulses is divided into two parts (95% as pump beam and 5% as probe beam) using a beam 
splitter. The time delay between pump and probe pulse is controlled by a retro reflector mounted 
on a translation stage. Both beams are then focused at the same position into the sample. An 
aperture in placed after the sample in front of the detectore. The probe beam is transmitted 
through the aperture while the pump beam is blocked. As the pump and probe beams spatially 
and temporally overlap within the sample two-photon absorption occurs and a sharp decrease in 
transmittance (increase in absorbance) of the probe beam can be observed as shown in Fig.  1.10 
[10]. 

 

 

Fig.  1.9 Schematic of transient absorption method 
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Fig.  1.10 A typical transient absorption signal 

1.5.4.     Four-wave mixing (FWM) 

In FWM three beams specially and temporally overlap to produce the forth beam referred to as 
FWM signal. Two intense pump beams cross the medium at an angle to form an interference 
pattern leading to a refractive index modulation. The third beam is used as a probe which “reads” 
this modulation and the forth beam is the diffracted probe beam whose intensity can be measured 
as a function of pump beam intensity [11] or time delay of probe beam relative to the pump 
beams [12] as shown in Fig.  1.12 (a) and (b) respectively. Fig.  1.11 shows a set up for degenerate 
four-wave mixing (DFWM) [13] in which all three input beams are derived by splitting one input 
parent beam. In this case, for a material without two-photon absorption, the signal is proportional 
to the cubic power of the input intensities given as 

 2
2(3) 2 3

02
0

( ) ( )
2

I L I
c n

ωω χ ω
ε

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

 
(1.11)  

where I(ω) is the DFWM signal intensity, I0(ω) is the pump intensity, L is the interaction length, 
and n is the refractive index of the medium [11]. 

 For a material with two-photon absorption, however, the detected DFWM signal involves two 
contributions, i.e., the coherent DFWM process such as parametric frequency mixing process 
and the population grating (population of the excited states created via two-photon absorption) 
process. For zero delay of the probe beam, the three incident beam pulses arrive together in the 
sample cell and the DFWM signal is derived from both the coherent four-wave mixing process 
and the population grating process. The DFWM signal has a power dependence between a third 
order and a fifth order, depending on the relative contributions from the coherent four-wave 
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mixing and the population grating. On the other hand, when the probe beam is delayed beyond 
the pulse width of the grating forming pulses, the instantaneous coherent four-wave mixing 
process does not occur, but the population grating contribution is still present if the excited state 
produced by two-photon absorption has a long enough lifetime. In this case, the DFWM signal 
should obey a fifth-order power dependence on the input intensity [14]. 

 

 

Fig.  1.11 Degenerate four-wave mixing setup 

 

 

Fig.  1.12 DFWM signal plotted versus (a) pump pulse energy and (b) time delay of probe beam relative to the pump 

beams. 
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1.5.5.     Z-scan technique 

In the Z-scan technique [15-18] the sample is scanned along the propagation direction of a 
tightly focused laser beam while the transmittance is measured as a function of sample position 
measured with respect to the focal point. By applying the Z-scan, both nonlinear refractive index 
and nonlinear absorption coefficient separately and even concurrently can be determined. The Z-
scan method is basically performed in two different schemes referred to as closed aperture Z-
scan and open aperture Z-scan that are described below in greater details.  

1.5.5.1.     Closed aperture Z-scan technique 

Fig.  1.13 shows a schematic setup of the closed aperture Z-scan technique. A pulsed laser beam 
is first divided into two parts using a beam splitter (B.S). The less intense beam is directed to a 
reference diode (Dr) recording the laser intensity (mainly its fluctuations). The more intense 
beam is focused into the sample using a plano-convex lens (Lf). The sample, which can be a 
transparent solid (such as a semiconductor, dielectric or polymer) or a cuvette containing a 
liquid, is mounted on a translation stage, which is moved along the beam propagation direction 
through the focal point. The beam waist is adjusted to be located at the center of the scanning 
range. The transmittance of the nonlinear medium through a finite aperture (A) placed in the far 
field after the sample is recorded for each sample position using a photo-diode (Dc). The 
measured signal represents the transmittance as a function of sample position. Ultimately, the 
measured signal is divided by the signal measured with reference diode to get rid of laser pulse 
energy fluctuations.   

At the absence of nonlinear absorption the closed aperture Z-scan signal is a symmetric curve 
with a minimum followed by a peak that is an indication of positive self-lensing or inversely 
with a peak followed by a valley that is an indication of negative self-lensing.  

The following qualitative description elucidates how the Z-scan trace can be related to the 
nonlinear refraction and its sign. According to Eq.  (1.7) the refractive index of a nonlinear 
medium changes with intensity when the laser intensity is high enough. Assuming a positive sign 
for n2 leads to increasing the refractive index with intensity.  The refractive index mimics the 
intensity profile changing transversely. Thus, if a medium is irradiated with a spatially-varying 
beam like a Gaussian beam the medium exhibits higher refraction in the center of the beam and 
lower refraction on the edges of the beam. Therefore, a nonlinear medium irradiated with a 
Gaussian beam is similar to a gradient convex lens and hence causes focusing the beam. This 
phenomenon is referred to as self-focusing because the intense laser beam causes focusing itself 
as illustrated schematically in Fig.  1.14. 
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Fig.  1.13 A schematic setup of closed aperture Z-scan technique 

 

Fig.  1.14 A schematic view of a self-focused Gaussian beam propagating through a nonlinear medium 

So far it was illustrated how positive nonlinearity results in self-focusing. The laser intensity of 
the focused laser beam also changes within the medium as it is moved through the focal plane. 
Therefore, a nonlinear medium, which is moved along the propagation direction of a focused 
Gaussian beam, operates as a variable focal length lens. When the medium is at a distance far 
away from the focal point the laser beam diameter is large and the intensity of laser beam is low 
and the nonlinear refraction is negligible; hence, the transmittance remains relatively constant. 
As the sample moves toward the focus, the laser intensity increases leading to self-focusing 
(positive self-lensing) in the medium that causes focusing the laser beam prior to the previous 
focal point that results in beam broadening on the aperture plane and thus a decrease in 
transmittance as shown in Fig.  1.15 (a). As the sample is moved away from the focal plane the 
same self-focusing tends to collimate the laser beam, leading to beam narrowing on the aperture 
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plane and thus an increase in transmittance as shown in Fig.  1.15 (b). Again when the sample is 
far enough from the focus, the intensity is low so that the transmittance remains constant.  

An inverse process occurs for a medium possessing negative nonlinear refraction such that the 
obtained Z-scan signal has a pre-focal peak followed by a post-focal valley. It is an extremely 
useful feature of the Z-scan method that the sign of the nonlinear refractive index is immediately 
obvious from the shape of the Z-scan trace.    

 

 

Fig.  1.15 self-focusing causing a pre-focus minimum transmittance (a) and a post-focus maximum transmittance (b) 

1.5.5.2.     Open aperture Z-scan technique 

Fig.  1.16 shows a schematic setup of an open aperture Z-scan experiment in which the finite 
aperture has been removed and the entire energy transmitted through the nonlinear medium 
(regardless of its focal conditions) is collected using a lens (Lc) and then detected by a photo-
diode (Dc). Due to detecting the entire transmitted energy, this method is no longer sensitive to 
beam broadening or narrowing and thus not sensitive to nonlinear refraction effects. This method 
is only sensitive to nonlinear absorption so the nonlinear absorption coefficient can be 
determined using this method. According to Eq.  (1.9), the absorption coefficient of a nonlinear 
medium increases with intensity if it is irradiated with a pulsed laser beam with a high enough 
intensity.  

 



17 

 

 

Fig.  1.16 A schematic setup of open aperture Z-scan technique. 

The following qualitative description clarifies how an open aperture Z-scan spectrum can be 
related to the nonlinear absorption of the sample. Starting the scan along the beam propagation 
direction from a distance far away from the focus, the beam irradiance is low and the nonlinear 
absorption is negligible. Hence, the transmittance remains relatively constant during the sample 
translation. As the sample is approaching the focus the beam irradiance increases and thus the 
absorption increases leading to a decrease in transmittance.  As the scan continues and the 
sample passes through the focus, the beam irradiance decreases leading to a decrease in 
absorption and thus an increase in transmittance. The Z-scan is completed when the sample is far 
away from the focus and the transmittance remains constant since the beam irradiance is low 
again. Therefore, the open aperture Z-scan trace is a V-shape curve whose depth is proportional 
to the laser intensity at the focal point, the thickness of the sample and the nonlinear absorption 
coefficient of the sample.  

A different effect can occur which results in a modified shape of the Z-scan curve in the open 
aperture geometry which is a consequence of saturation of absorption. This is a nonlinear 
response of some materials in which the linear absorption coefficient or even the nonlinear 
absorption coefficient saturates and hence decreases with intensity. As typical for saturation, the 
absorption coefficient will behave like 

 0 0
0 2 3 2

2 3
2 3

( )
1 1 1

s s s

I I II I II I I

α α α
α = + +

+ + +
 (1.12)  

where α0 is the linear absorption coefficient, α0
2 is the 2PA coefficient at the low intensity 

approximation [19, 20], α0
3 is the 3PA coefficient at the low intensity approximation [21, 22], I 
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is the laser beam intensity and Is is the saturation intensity at which the linear and nonlinear 
absorption coefficients and then the absorption coefficient as a whole are reduced by a factor of 
2.  

1.5.5.3. Closed aperture Z-scan technique at the presence of nonlinear absorption or 
saturation of absorption. 

In section 1.4.5.1, a purely refractive nonlinearity was discussed, assuming that no absorptive 
nonlinearities are present. In this case, a symmetric Z-scan trace is obtained exhibiting the same 
magnitude of peak height and valley depth. Presence of multi-photon absorption or saturation of 
absorption affects the CA Z-scan signal in two aspects as can be seen in Fig.  1.18. First, the null 
point (where the normalized transmittance passes unity which occurs at focal position z=0) shifts 
to right or left depending on the sign of nonlinear refractive index and type of nonlinear 
absorption so that it will be no longer coincides with the focal point. Secondly, the Z-scan trace 
is no longer symmetric. Influence of multi-photon absorption leads to suppress the peak and 
enhance the valley whereas, the presence of saturation absorption produces the opposite effect; it 
causes a peak enhancement and valley reduction. To determine the nonlinear refractive index of 
a material possessing absorptive nonlinearities a combination of closed and open aperture Z-scan 
setup, as shown in Fig.  1.17, can be used. In this experiment the signal obtained from diode Dc1 
is divided by the signal obtained from diode Dc2 to subtract the nonlinear absorption contribution 
and deducing a pure nonlinear refractive index.  

 

 

Fig.  1.17 A schematic setup of closed aperture Z-scan method applying for some materials possessing a significant 

nonlinear absorption  

 



19 

 

 

 

Fig.  1.18 Z-scan signals for a sample having refractive as well as absorptive nonlinearity 

In Fig.  1.18 blue curve is the signal obtained from Diode Dc1 having contributions of absorptive 
and refractive nonlinearity. Red trace shows the signal measured with Diode Dc2 having only a 
contribution of nonlinear absorption. Green trace demonstrates the division of the blue curve by 
the red one that shows a symmetric trace having only a contribution of nonlinear refraction.    

1.6.     Application of 2PA 
2PA has found numerous fascinating applications due to its unique properties: firstly, the 2PA is 
intrinsically proportional to intensity squared thus it occurs within a small volume around the 
focal point of a focused pulsed laser beam. Thus, the size of the affected area can be smaller than 
the diffraction limited area which is obtained in linear optics. Secondly, due to the quadratic 
dependence of the 2PA on laser intensity, 3D modification and structuring is feasible by 
scanning of the focal point of a focused laser beam within the bulk of a transparent material; and 
thirdly, 2PA implies using laser radiation with wavelength longer than the absorption band thus, 
the loss of laser beam energy via Rayleigh scattering is greatly reduced compared to what occurs 
in the linear absorption case. Several applications of 2PA are discussed in the following.  

1.6.1.     Two-photon induced polymerization 

Micro-fabrication based on one-photon induced polymerization (1PIP) has been realized for 
quite a long time. However, 1PIP cannot satisfy the requirements of modern applications such as 
micro-optical-electromechanical systems and photonic crystals due to its low-spatial resolution 
(because of its diffraction limit) and two-dimensional limitations (due to the absorption of 
radiation on the surface) [23]. Owing to the quadratic dependence of the 2PA on the laser pulse 
energy and also the threshold behavior of polymerization, two-photon induced polymerization 
(2PIP) has been shown to provide the means for 3D micro-fabrication with a resolution beyond 
the diffraction limit [24]. By tightly focusing the laser beam into the sample, the peak intensity in 
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the focus is sufficient to trigger 2PA and thus polymerization in the very small volume around 
the focal point.  Then the 3D microstructures can be fabricated by translating the focus into the 
transparent medium three dimensionally. Finally, by developing the structure in a solvent the 
unpolymerized resins are washed away and the 3D solid structure stands out. In particular, by 
fabricating periodic 3D micro or sub-micron dielectric structures, photonic band-gap materials 
can be made. 

 

 

Fig.  1.19 a schematic setup for 3D micro-structuring based on 2PIP. An Acousto-optic modulator (AOM) is used as 

fast switch (the first order of diffracted beam is taken). A telescope is employed to extend the beam diameter on the 

objective leading to reduce the beam waist radius on the focus. A camera is also used to monitor the polymerization 

process 

1.6.2.     Two-photon induced photo-grafting 

Molecular grafting is a versatile tool providing means for tailoring physio-chemical properties of 
surfaces. Its current applications are ranging from electronic, such as solar cells and sensors [25], 
to biomedical engineering [26]. Photo-induced grafting provides additional advantages of spatial 
and temporal control of the process. Apart from producing micro-patterns, the surface density of 
the covalently immobilized molecules can be adjusted by tuning the exposure doses [27]. 
Furthermore, using molecules responding to different wavelength it is possible to pattern 
multiple species onto the same substrate sequentially [28]. Due to technical limitations, until 
recently, most studies using photo-grafting were conducted on flat surfaces. Possibility of 
producing volumetric patterns decorated with bio-molecules is very appealing for tissue 
engineering. True 3D grafting has been recently achieved by multi-photon excited 
polymerization process [29]. 
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1.6.3.     3D optical data storage 

Surface-storage technologies are approaching fundamental limits that may be difficult to 
overcome, as ever-smaller bits become less thermally stable and harder to access. A possibly 
fascinating approach for next generation data-storage is to use light to store information within 
the (three- dimensional) volume of a material. The surface storage density manageable with 
focused light beams is roughly 1/λ2 exploiting 1PA. This results in a capacity of 4 Gigabytes 
(GB) on each side of a 120mm diameter, 1mm thick disk. But by storing data throughout the 
volume at a density of 1/λ3 exploiting 2PA, the capacity of the same disk could be increased to 8 
Terabytes (TB). 

3D optical data storage using 2PA was first introduced by Rentzepis in 1989 [30]. The 
advantages of two-photon based memory systems are [31]: 

1. Immense information storage capacity, 1013 bits/cm3. 

2. Random and parallel access. 

3. Fast writing and reading rates (nanosecond range). 

4. Small size and low cost. 

5. Minimal cross talk between adjacent bits. 

6. High reading sensitivity. 

The basic components of a two-photon process based memory are (would be), a medium which 
exhibits a change in its optical properties (absorbance, fluorescence, refractive index, etc.) after 
2PA, appropriate read and write beams, and a mechanism to precisely access any volume 
element in the medium [32].  

Fig.  1.20 shows a single-beam two-photon recording and one-photon readout system [31]. In this 
setup, the recording laser beam (532 nm) passes through a beam expander then onto the 
objective-lens assembly, which focuses it inside the volume of the spinning disk where the data 
is recorded. The absorption band of molecules used as storage medium in this setup is below 400 
nm whereas the absorption band of excited molecules after absorbing two photons of 532 nm 
shifted to above 600 nm.  After recording, a 635-nm laser diode is used to induce one-photon 
fluorescence from the recorded bits. The fluorescence is picked up by the same objective lens 
and focused onto a detector, such as a photomultiplier tube or photodiode array. 
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Fig.  1.20 A schematic setup for two-photon write, one-photon read out (inset shows a photo of recording head and 

storage medium) 

Fig.  1.21 shows an Optical image of bits written inside fused silica (a) and read out of data 
through a phase-contrast microscope (b) [33]. Bit separation in a layer is 1 μm and layer 
separation is 7 μm. Thus each bit occupies a volume of 1×1×7 μm, corresponding to a memory 
density of 143 Gb/cm3. 

 Readout signal shows less intense radiation and more intense radiation that can be considered as 
zero “0” and one “1” in computer language. Therefore, any data can be translated in zero and one 
and then recorded within a transparent storage medium as laser irradiated and non-irradiated 
volume ppoint.  
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Fig.  1.21. Optical image of bits written inside fused silica using 400 nJ 200 fs excitation pulses. Light is focused by 

a NA=0.85 objective. In-plane bit separation is 1 μm (a). Read out of data through a phase-contrast microscope. The 

upper part of the figure is the signal recorded by a single row of the CCD camera. The pits being imaged are shown 

in the bottom portion, with the two lines denoting the edges of the row (b) 

1.6.4.     Two-photon fluorescence microscopy 

Two-photon excitation microscopy is a fluorescence imaging technique that allows imaging of 
living tissue up to a very high depth of about one millimeter. By simultaneous absorption of two 
photons of long wavelength, a molecule is excited to an upper energy level and then relaxes to 
the ground state by emitting fluorescence that can be detected as a characteristic of emitting 
molecules.  

Two-photon imaging shows particular advantages over the widely used one-photon optical 
counterpart, confocal fluorescence microscopy [34]. Infrared light used for two-photon 
excitation fluorescence (2PEF) is subject to less absorption and scattering than UV or visible 
light. Therefore, the excitation penetrates more deeply into the sample. Quadratic dependence of 
the 2PA on the laser irradiance leads to confining the fluorescence excitation to a small volume 
at the focus of the objective. The Photon flux is kept insufficient in the out-of-focus planes to 
excite fluorescence, except for extremely high laser powers. Photo-bleaching and photo-damage 
are limited to the zone of 2PEF and do not occur above or beyond the focus.  

1.6.5.     Frequency up-converted lasing 

2PA induced lasing has been considered as a promising approach for frequency up-conversion of 
coherent light. Frequency up-converted lasing is a process via which a shorter wavelength is 
produce when the gain medium is pumped with longer wavelength. Exploiting this process 
enables one to obtain a broad range of visible lasing by pumping with an infrared laser source 
[35]. Frequency up-converted lasing was reported as early as 1971, when lasing was obtained 
from a solution of Rhodamine 6G pumped with the output of a ruby laser [36]. This method of 
producing coherent light has many advantages; for instance, it does not require phase matching 
(as second harmonic generation requires) and can provide a broad tuning range with considerable 
ease [37]. 
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 Fig.  1.22 shows the two-photon pumped (2PP) frequency up-converted laser output energy 
versus the input energy of the pump laser. The output energy manifests a quadratic dependence 
on the input energy which is an intrinsic characteristic of 2PA process [35]. As can be seen in 
this figure, the efficiency of TPP frequency up-conversion increases by increasing input energy 
(it has increased from 0.5 % to 1.2 % as input pulse energy has increased from 2 mJ to 4 mJ).    

 

 

Fig.  1.22 The output energy of a two-photon pumped frequency up-converted laser versus the input energy of the 

pump laser 

1.6.6.     Two-photon photodynamic therapy  

Over the past two decades photodynamic therapy (PDT), a cell-killing technique where a 
photosensitizing drug is activated by carefully targeted visible light, has been used to treat 
diseases caused by neoplasia (abnormal proliferation of cells ) such as various cancers [38]. 
Serious challenges arise, however, with the traditional single-photon PDT for glioma  (a type of 
tumor that starts in the brain) tissues. For example, currently approved single-photon PDT drugs 
have the drawback of requiring excitation by visible light, which has limited penetration depth 
due to the restrictive tissue transparency window for target cells that are located deep inside 
living tissues; photons in this spectral region do not penetrate deep enough, thus making single-
photon PDT less effective for glioma tissue treatment [39]. 

One potential approach for PDT that has been discussed for many years is two-photon excitation 
of photo-sensitizers, where two photons of infrared light rather than a single visible photon are 
used for drug activation. This approach has several benefits. It provides better spatial selectivity 
as drug activation only occurs in regions of high optical intensity (that is, confined to the focal 
spot of a focused laser beam). It also leads to deeper tissue penetration as infrared light is subject 
to less scattering than visible light owing to its longer wavelength and also less linear absorption 
since 2PA spectra  window of tissues is between 700 and 1100 nm. The main idea in 
photodynamic therapy is the following. A photosensitizing drug absorbs two photons of light to 
create an excited singlet state, which then undergoes intersystem crossing to a triplet state. The 
lifetime of the triplet state is long enough to interact with molecular oxygen to yield activated 
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singlet oxygen, which is highly toxic and kills cells. A key aspect of PDT is that the 
photosensitizing drug is regenerated and therefore is not consumed by the process; indeed it 
undergoes no chemical change. 

1.6.7.     Optical power limiting 

Optical power limiting is an effect in which the transmission decreases as the incident light 
intensity increases [40]. This is due to nonlinear absorption, in which the absorption probability 
of high intensity pulses is larger as compared to the absorption of low intensity pulses. This 
intensity-dependent transmission feature will limit the output intensity so that, as a consequence, 
it will remain below a certain maximum value as can be seen in Fig.  1.23 (a). Therefore, the 
optical-limiters can protect human eyes and sensors exposed to high power light sources.  It has 
been pointed out that materials exhibiting large multi-photon absorption properties could be used 
as effective optical power limiter for ultrafast pulsed laser system environments. Fig.  1.23 (b) 
shows optical stabilization [41] as an optical-limiting related application. The optical intensity 
transmitted through an optical limiter exhibits much lower fluctuation (signal shown in the lower 
part of the figure (b)) compared to the original intensity signal measured before the optical 
limiter (signal shown in the higher part of the figure (b)). 

 

Fig.  1.23. Transmitted intensity versus incident intensity showing an output saturation due to 2PA (a). Optical 

stabilization based on 2PA (b) (laser fluctuation has been greatly reduced) 
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Chapter 2   

2. Analytical calculation 
In this chapter the required calculation to obtain the normalized Z-scan transmittance using a 
single Gaussian laser beam will be presented. Some of the presented equations are well known 
and can be found in the literature. Because of their relevance they are discussed in detail in 
sections 2.2.1,  2.3.2,  2.5.1 and  2.5.2. However, these available equations consider only a 
limited number of nonlinear effects and are generally restricted to special experimental 
parameters. In order to include many other nonlinear processes and extend the experimental 
parameters beyond these limits, the expected curves had to be calculated. These extensions of the 
existing theory, which are needed for the measurements in following chapters, constitute the 
major part of this chapter. In detail, the following issues are treated: 

 Closed aperture Z-scan for fifth order nonlinearity in section 2.2.2 

 Closed aperture Z-scan for simultaneous third and fifth order nonlinearity in section 2.2.3 

 Open aperture Z-scan at the presence of three-photon absorption in section 2.3.3 

 Closed aperture Z-scan for third order nonlinearity at the presence of two-photon 

absorption in section 2.4.1 

 Closed aperture Z-scan for fifth order nonlinearity at the presence of 3PA in section 2.4.2 

 Closed aperture Z-scan for concurrent third and fifth order nonlinearity at the presence of 

two-photon absorption in section 2.4.3  

In order to pursue the calculation of the Z-scan transmittance some text materials about the 
Gaussian laser beam and its propagation throuth the free space is usefull to be reviewed. 

2.1.     Gaussian beam  

2.1.1.     Realizing a Gaussian beam under paraxial approximation 

A real laser beam has a unique direction and finite width. A plane wave or a spherical wave  both 
can not be a real laser beam because a plane wave although has a unique direction but does not 
have finite width and it spreads all over the space. A spherical wave has a finite width but has 
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not a unique direction and it propagates in all directions. Thus, the wave equation has to be 
solved with paraxial approximation to derive the Gaussian wave representing a finite width light 
beam propagating in a certain direction. The electric field E in an electrically neutral, 
nonmagnetic and homogeneous media obtained by using Maxwell’s equations is governed by 
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To obtain electric field from Eq.  (2.1) the electric dipole moment density P must be specified.  

When the radiation propagates through the free space (where the polarization is zero) the Eq. 
 (2.1) turns into a very simple equation given as 

 2
2

2 2
1 0EE

c t
∂

∇ − =
∂

 (2.2)  

The following is textbook knowledge, but it is still worthwhile to repeat here the most relevant 
formulas, as they will be used extensively for the interpretation of the Z-scan signals in the 
following. 

An spherical monochromatic wave can be the solution of Eq.  (2.2) as follows 
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where r is the radial coordinate as the distance between the origin and the observation point.  

Using paraxial approximation in which a small patch of observation plane around z-axis is 
considered the radial coordinate r can be approximated as follows 
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Now the spatial part of Eq.  (2.3) is modified as 
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where E(r) is a parabolic wave. It can be easily shown that if the real parameter z in Eq.  (2.5) is 
replaced by the complex parameter z+iz0, E(r) is still a solution for Helmholtz equation but it 
attains additional remarkable properties. Thus  
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is the propagation phase variation,  
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is the wave front curvature,  
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is the beam radius, 
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is beam waist radius and 
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is the Rayleigh range that refers to a distance from the beam waist where the beam spot area 
increases by a factor of 2 compared to the beam spot at the beam waist.  

E(r) in Eq.  (2.8) can be representative for a light beam because it has a finite extent that depends 
on coordinate x, y and z and also it has a unidirectional propagation in the positive z direction. 

Since the radial distribution of the electric field in Eq.  (2.8) and subsequently the intensity 
pattern obeys a Gaussian function, this traveling electric field represents the electric field of a 
Gaussian light beam. By substituting the introduced parameters in equations (2.9)-(2-13) into Eq. 
 (2.8) it can be rewritten as  
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The light intensity is always proportional to the square of the modulus of the electric field thus 
the spatial intensity distribution of a Gaussian beam is characterized by the Gaussian function as 
follow: 

 2

2
2 2

( )0
0 2( , , ) ( )

( )

r
w zwI r z t I t e

w z

−
=  (2.15)  

The light power is obtained by integration the intensity over r in the plane normal to the 
propagation direction of the incident beam. So  
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The power transferred through an aperture of radius a can also be calculated by integration of the 
intensity over r from the origin up to a distance a.  
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After substituting Eq.  (2.15) in Eq.  (2.17), the power is obtained: 
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The aperture transmittance defined as the quotient of the power transmitted through the aperture 
and the entire incident power can be written as: 
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where a is the aperture radius, w(z) is the beam radius in the aperture plane and z is the aperture 
position. 

At the origin (z=0) the wavefront curvature radius of the light beam R(z) is infinite representing 
a plane wave. The radius of the wavefront curvature reaches its minimum value of 2z0 at the 
position z = z0. 2z0 is known as the confocal range in analogy with the distance between two 
mirrors in a laser resonator with confocal configuration. In the confocal configuration the focal 
points of two identical mirrors are coincident allowing each mirror located at the central point of 
another mirror that corresponds to a distance of 2f (f is the focal length of mirrors) between two 
mirrors which is equal to the curvature radius of the mirrors.  

The Rayleigh range is defined as the distance from the beam waist where the beam radius 
increases by a factor of √2 or correspondingly the intensity decreases by a factor of 2.  
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Fig.  2.1. The curvature radius of wave front plotted against the distance from the focal plane as the scale of Rayleigh 
range 

 

 

Fig.  2.2. The beam radius plotted versus the distance from the focal plane as the scale of Rayleigh range 
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Fig.  2.3. The 2D intensity distribution of a Gaussian beam plotted versus the distance from the optical axis 

 

 

 

Fig.  2.4. Intensity distribution of a Gaussian beam in the xz plane. Figure (a) represents a spherical Voxel for a beam 
waist diameter of 330 nm. Figure (b) demonstrates an elliptical Voxel when the beam diameter at the beam waist 
diameter is 2 Micron (scale is not the same for these two figures). 

2.1.2.     Propagation of a Gaussian beam through free space  

In the Z-scan method a focused laser beam passes through a nonlinear medium. Due to the 

change in the refractive index of the medium the phase of the laser beam is distorted resulting in 

the amplitude modulation in the far field observation plane. The intensity distribution at the far 

field aperture plane is required to be calculated in order to obtain the transmittance through the 
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aperture. Therefore, one should know how a Gaussian light beam diffracts and propagates 

through free space to approach the far field plane. For this purpose, it is supposed that some 

textbook knowledge is useful to be repeated here.  

If  is an arbitrary function in the plane located at the position z0, its Fourier 

transform will be given as: 

 2 ( ' ')
x 0( , ) ( ', ', ) ' 'x yi x y

yF f x y z e dx dyπ ϑ ϑϑ ϑ
+∞ +∞ +

−∞ −∞
= ∫ ∫  (2.22)  

Therefore, 0( ', ', )f x y z  can be written as a summation of harmonic functions (as plane waves) as 

inverse Fourier transform allows 

 
2 ( ' ')

0 x( ', ', ) ( , ) x yi x y
y x yf x y z F e d dπ ϑ ϑϑ ϑ ϑ ϑ

+∞ +∞ − +

−∞ −∞
= ∫ ∫  (2.23)  

The phase of a plane wave changes as it propagts in the z direction. Thus the arriving wave on 

the plane located at position z is multiplied by a factor of 0( )zik z ze− −  where  is the z-component 

of wave-vector k and (z-z0) is the traveling length. 

kz can be calculated in term of k, ky and kx. 

 2 2 2
x y zk k k k= + +  (2.24)  

 2 2 22 (2 ) (2 )x y zkπ πϑ πϑ
λ

= + +
 (2.25)  

 
2 2

2
12z x yk π ϑ ϑ

λ
= − −

 (2.26)  

where 1 λ
 
is called cut-off frequency and 2x xkϑ π=   and 2y ykϑ π=   are spatial frequencies. If 

the electric field distribution on a plane located at a given position z0 is known, one can find the 

electric field distribution on any output plane placed at a z position. That is 

),','( 0zyxf

zk
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 ( )2 2
02

122 ( )
x( , , ) ( , )

x y
x y

i z zi x y
y x yf x y z F e e d d

π ϑ ϑπ ϑ ϑ λϑ ϑ ϑ ϑ
− − − −+∞ +∞ − +

−∞ −∞
= ∫ ∫  (2.27)  

Employing paraxial approximation makes Eq.  (2.27) more convenient for calculating. In this 

approximation the input function 0( ', ', )f x y z  contains only spatial frequencies that are much 

smaller that the cut-off frequency. That means 

 2 2
2

1
x yϑ ϑ

λ
+ <<  (2.28)  

Or on the other word 

 2sin 1θ <<  (2.29)  

where θ is the angle between the propagation direction of a plane wave and the optical axis. 

Under these conditions  

 
( ) ( )2 21

2 2 2 2 2 2
2

1 1 11 ( )
2

x y
x y x y

λ ϑ ϑ
ϑ ϑ λ ϑ ϑ

λ λλ

+
− − = − + ≅ −  (2.30)  

where the third and higher order terms in the above expansion have been neglected. 

Now, using Fresnel approximation, Eq.  (2.27) can be written as:       

 ( ) ( )( )2 2
0 0

2
2 ( )

x( , , ) ( , ) x yx y
i z z i z zi x y

y x yf x y z F e e e d d
π

π λ ϑ ϑπ ϑ ϑ λϑ ϑ ϑ ϑ
− −+∞ +∞ + −− +

−∞ −∞
= ∫ ∫

 
(2.31)  

where x( , )yF ϑ ϑ  is the Fourier transform of 0( ', ', )f x y z . x' and y' are the radial coordinates in 

the input plane and z0 is the position of the input plane. 

After substituting x( , )yF ϑ ϑ  from Eq.  (2.22) into Eq.  (2.31), the output function on the 

observation plane is obtained in terms of the input function. 
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 { }
( ) ( )( )2 2

00

2 ( ' ')
0

2 ( )

( , , )  ( ', ', ) ' '   

                         

 x y

x yx y

i x y

i z zi k z zi x y
x y

f x y z f x y z e dx dy

e e e d d

π ϑ ϑ

π λ ϑ ϑπ ϑ ϑ ϑ ϑ

+∞ +∞ +∞ +∞ +

−∞ −∞ −∞ −∞

+ −− −− +

= ×∫ ∫ ∫ ∫
 (2.32)  

 

 ( ) ( )( )

( )( ) }

2 2
00

0

0

2 ( ') ( ')

( , , ) ( ', ', ) ' ' x y

x y

i z zik z z

i x x y y z z
x y

f x y z e f x y z dx dy e

e d d

π λ ϑ ϑ

π ϑ ϑ ϑ ϑ

+∞ +∞ +∞ +∞ + −− −

−∞ −∞ −∞ −∞

− − + − −

⎧= ×⎨
⎩∫ ∫ ∫ ∫

 (2.33)  

In Eq.  (2.33), the term inside the bracket is the inverse Fourier transform of the Gaussian 

function ( )( )2 2
0x yi z z

e
π λ ϑ ϑ+ −

. 

Fourier and inverse Fourier transform of a Gaussian function are given by: 

 

Fourier transform of 

2 2)
2 2 2 22

(
( )x y

x y
aae ae π ϑ ϑπ

+
− − +

⎡ ⎤
⎢ ⎥ =
⎢ ⎥
⎣ ⎦

 (2.34)  

 

 

              Inverse Fourier of   ( )
( )2 2

2 2 2 2
2

2
1x y

x y
a ae e

a
π ϑ ϑ

π

+
−− +⎡ ⎤ =⎢ ⎥⎣ ⎦

                 (2.35)  

Thus, the term inside the bracket in Eq.  (2.33) is obtained as a Gaussian function. That is as 
follows 

 ( )( ) ( )( )

( )

2 2
0 0

2 2

0

2 ( ') ( ')

( ') ( ')
2 ( )

0
                          

( )

x y x yi z z i x x y y z z
x y

ki x x y y
z z

e e d d

i e
z z

π λ ϑ ϑ π ϑ ϑ ϑ ϑ

λ

+∞ +∞ + − − − + − −

−∞ −∞

− − + −
−

=

−

∫ ∫
 (2.36)  

After substitution Eq.  (2.36) into Eq.  (2.33) the relation between an input function in a plane 

located at z0 and an output function in a plane located at z is given by the following equation. 
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( ) ( )2 2

0 0
( ') ( ')

2 ( )
0

0
( , , ) ( ', ', ) ' '

( )

ki x x y y
i k z z z zif x y z e f x y z e dx dy

z zλ

− − + −+∞ +∞− − −

−∞ −∞
=

− ∫ ∫  (2.37)  

Eq.  (2.37) is the Fresnel diffraction integral which is an approximation of the Huygens integral. 

Using Eq.  (2.37) enables one to calculate the electric field distribution of a laser beam 

propagating through free space on any observation plane located at the position z if this 

distribution on another plane located at a different position (z0) is known. Using some 

mathematical properties, integrals such as in Eq.  (2.37) can be expressed in terms of the 

convolution of 0( , , )f x y z and ( ) ( )2 2

0 02 ( )

0( )

ki x y
i k z z z zi e e

z zλ

− +
− − −

−
. 

2.2.     Closed aperture Z-scan at the absence of nonlinear 
absorption 

2.2.1.     Closed aperture Z-scan for third order nonlinearity  

The polarization induced in a medium by an applied electric field can be expanded as an 

exponential series of the electric field E as given in Eq. (1.1). As the intensity of applied electric 

field increases the induced polarization violates from the linear dependence on applied field 

since the higher order terms in Eq.  (1.1) becomes comparable to the first linear term and 

subsequently the induced polarization changes nonlinearly with the applied electric field. As a 

consequence, the dielectric constant and thus the complex refractive index depend on the applied 

electric field strength.  

 ( )(1) (2) (3) (4)

0
1 .......E E E E E Eε χ χ χ χ

ε
= + + + ⋅ + ⋅ ⋅ +  (2.38)  

 0 2( ) ......n I n E n Iξ= + + + (2.39)  

In Eq.  (2.39), the first term n0 is the complex linear refractive index describing refraction and 

linear absorption. The second term, Eξ  , is the linear electric field dependent change in the 

refractive index. This refractive behavior is refered to as Pockels effect  which can be exploited 

in designing devices such as Pockels cell. The third term, n2I, displays the change in the 

refractive index that is proportional to the light intensity; this term manifests itself in a 

phenomenon known as the Kerr effect.  
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The Kerr effect is a third order or cubic nonlinear response when a linear variation in the 

refractive index as a function of light intensity is observed while a medium is irradiated with 

more intense radiation such as a pulsed laser beam. 

 
0 2( )n I n n I= +  (2.40)  

 
 2n n IΔ =  (2.41)  

Eq.  (2.41) indicates that the refractive index varies linearly with light intensity whether the light 

intensity varies temporally at any point within a medium or changes spatially in a medium at any 

time.             

The spatial intensity distribution of a Gaussian beam on the normal plane to the beam 

propagation direction is governed by the Gaussian function. That means the light intensity is 

stronger  in the center of the beam spot and decreases laterally as a function of distance from the 

center.  

When a spatially Gaussian beam travels through a nonlinear medium the induced changes in the 

refractive index mimic the light intensity profile leading to create a convergent lens if n2 

possesses a positive sign and inversely a divergent lens if n2 possesses a negative sign. These 

effects are known as self-focusing and self-defocusing respectively.  

If the medium length, through which the Gaussian beam is propagating, is small enough so that 

changes in the beam diameter within the medium due to either diffraction or nonlinear refraction 

can be neglected, the medium is regarded as a thin sample. In the thin sample approximation the 

electric field amplitude changes only due to absorption and the phase of electric field only 

changes due to nonlinear refraction.  

 ( ) ( )
'

d k n I
dz
ΔΦ

= Δ  (2.42)  

 
( )

'
dI I I
dz

α=−
 

(2.43)  

In the case of cubic nonlinearity and negligible nonlinear absorption Δn(I) is a linear function of 

intensity and α(I) is a constant as the linear absorption coefficient. 
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Under these assumptions Eq.  (2.42) and  (2.43) can be easily solved to find the nonlinear phase 

shift at the exit surface of the sample. 

 

 
0'

dI I
dz

α= −
  (2.44)  

 0 '( ') ( ) zI z I z e α−=
 

(2.45)  

where z  is the sample position. 

Substituting Eq.  (2.41) and  (2.45) into Eq.  (2.42) yields: 

 
0 '

2 2
( ) ( ') ( )

'
zd k n I z k n I z e

dz
α−ΔΦ

= =  (2.46)  

After integration over z' for the whole length of the sample, the entire phase change is obtained 

as: 

 
2 2

0 22
( )

2 0 2
0

2
0

1 1( , , , ) ( )
1

x yL
w zex y z t k n I t e

z
z

α

α

+− −

⎛ ⎞
⎜ ⎟⎛ ⎞− ⎜ ⎟ΔΦ = ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎜ + ⎟⎜ ⎟
⎝ ⎠

 (2.47)  

The effective length for the sample can be defined as:  

 0

0

1 L

eff
eL

α

α

−⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.48)  

where α0 is the linear absorption coefficient and L is the physical length of the sample. The on-

axis phase shift at the focus is defined as: 

 0 2 0(0, 0, 0, ) ( ) ( ) efft t k n I t LΔΦ = ΔΦ =  (2.49)  

Therefore, the on-axis phase shift at the position z is obtained as: 
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 0
0 2

2
0

( )
( , )

1

t
z t

z
z

ΔΦ
ΔΦ =

+
 

(2.50)  

And thus, the phase shift at any point on the wavefront can be written as: 

 2 2

2
( )2

( )
0( , , , ) ( , )

x y
w zx y z t z t e

+
−

ΔΦ = ΔΦ  (2.51)  

where I0(t) is the on-axis intensity at the focus.  

The complex electric field exiting the sample experiences an amplitude reduction by a factor of 
2Le α−  due to linear absorption and a phase distortion by a factor of ( , , , )i x y z te− ΔΦ due to 

refractive index change. So, the complex electric field on the exit surface of the sample is now 

containing an amplitude depletion factor as well as nonlinear phase shift. That is 

 
0

1
( , , , )2( , , , ) ( , , , )

L i x y z t
eE x y z t E x y z t e e

α− − ΔΦ=  (2.52)  

The quantity desired to be calculated is the electric field distribution on an observation screen at 

a distance d from the sample. For this purpose, the integral in Eq.  (2.37), in which the electric 

field in Eq.  (2.52) is inserted, must be calculated. Such an integral cannot be calculated diectly. 

A possible solution proposed by Weaier et al. [42] is to decompose the complex electric field at 

the exit plane of the sample into a summation of Gaussian beams by expansion of the nonlinear 

phase term, ( , , , )i x y z te− ΔΦ , using the Taylor series expansion. That is 

 [ ]( , , , )

0

( , , , )
!

m
i x y z t

m

i x y z t
e

m

∞
− ΔΦ

=

− ΔΦ
= ∑  (2.53)  

 2 2

2
( )20( , , , ) ( )

0

( , )

!

x ym m
i x y z t w z

m

i z t
e e

m

+∞ −
− ΔΦ

=

⎡ ⎤− ΔΦ⎣ ⎦= ∑
 

(2.54)  

After substituting ( , , , )E x y z t and ( , , , )i x y z te− ΔΦ  from Eq.  (2.14) and  (2.54) in Eq.  (2.52), the 

electric field exiting the sample is given by: 
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( )

2 2
2 2

2
( )( )1
( ) 2 100 2 ( )2

0
0

( , )
( , , , ) ( )

( ) !

x ymx yikL w z mik z i t i R z
e

m

i z tw
E x y z t E t e e e e e e

w z m
αω φ

++ −∞ −− +− −

=

⎡ ⎤− ΔΦ⎣ ⎦= ∑
 

(2.55)

Eq.  (2.55) shows a summation of infinite number of Gaussian beams with different radii. In this 

summation, the beam radius of mth Gaussian beam is given by  ( ) 2 1w z m +  showing a 

decrease with m (m is an integer number). The propagation of each individual Gaussian beam 

through free space between the sample and the aperture plane obeys Fresnel diffraction where 

the input plane is the exit surface of the sample and the output plane is the aperture plane located 

at the distance d away from the sample. On the aperture plane all those Gaussian beam 

components contained in Eq.  (2.55) will add together to reconstruct the intensity distribution of 

the main Gaussian beam.  

Recalling Eq.  (2.37) gives a suitable tool to calculate the electric field distribution on the 

aperture plane located at a distance d far away from the sample while the input plane is the exit 

surface of the sample. 

 ( )2 2( ') ( ')
2( , , , ) ( ', ', , ) ' '
ki x x y y

i k d d
a e

iE x y z t e E x y z t e dx dy
dλ

− − + −+∞ +∞−
−∞ −∞

= ∫ ∫  (2.56)  

where, d = za – z and za is the position of aperture plane and z is the sample position.  

By substituting ( ', ', , )eE x y z t  from Eq.  (2.55) into Eq.  (2.56), the electric field distribution on 

the aperture plane can be calculated from the equation below. 

 ( )

( )
( )

( )

2 2

2 2 2
2 2

1
00 2

0
0

' '
' ' ( ) ( ') ( ')2 12 ( ) 2

( , )
( , , , ) ( )

( ) !

' '

m
Li k d i k z i t i

a
m

x y
x y kw zi k i x x y ymR z d

i z twiE x y z t e E t e e e e
d w z m

e e e dx dy

αω φ

λ

∞ −− − −

=

+
−+ ⎛ ⎞

− − − + −⎜ ⎟+∞ +∞ +⎝ ⎠
−∞ −∞

− ΔΦ
= ×∑

∫ ∫

 (2.57)  

The double integral in Eq.  (2.57) is composed of two independent integrals which have the same 

integrand. Thus, they can be separately calculated.  
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( )

2 22 2 2
22

00

1' '' ' '
2 ( ) 22 ( ) 2 2' 'mm

k kx x xx x i i x x xi k i k i k i kR z d wwR z d d de e e dx e e e dx

⎛ ⎞
− ⎜ ⎟− + +−− − − ⎜ ⎟+∞ +∞ ⎝ ⎠

−∞ −∞
=∫ ∫

 
(2.58)  

where  

 2
2

0
( )

2 1m
w zw

m
=

+
 (2.59)  

The exponent in the right hand side of Eq.  (2.58) can be represented as a perfect square. That is: 

 

( )
2 22 2

2
0

' '' 2 2
2 ( ) 2 2

2
2

0

2

2
0

2
0

' exp
14

2 ( ) 2

1exp ' '
2 ( ) 2 12

2 ( ) 2

m

x x xx xi k i k i kwR z d d

m

m

m

k xe e e dx e
k kd i i

R z dw

k k xi i x i k dx
R z dw k kd i i

R z dw

−−− − −+∞

−∞

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

= − ×⎢ ⎥⎛ ⎞⎢ ⎥+ +⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎛ ⎞⎜ ⎟
⎢ ⎥− + + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞⎢ ⎥⎜ ⎟⎝ ⎠ + +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∫

+∞

∞∫

 

(2.60)  

According to the following equation, the integral of the Gaussian function on the right hand side 

of Eq.  (2.60) is given in Eq.  (2.62). 

 2

2
x
ae dx aπ

−+∞

−∞
=∫  (2.61)  
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2
0

2
0

1
2

2
0

1exp ' '
2 ( ) 2 12

2 ( ) 2

1
2 ( ) 2

m

m

m

k k xi i x i k dx
R z dw k kd i i
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k ki i
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+∞

−∞

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎛ ⎞⎜ ⎟
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⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

∫
 

(2.62) 

So the total result for the double integral in Eq.  (2.57) will be: 
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2 22 2
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2 ( ) 2

2
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exp
2 1 14
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=
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⎢ ⎥⎜ ⎟
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− − + ×⎢ ⎥⎜ ⎟
⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟+ + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

∫ ∫

 (2.63)  

After substitution the double integral from Eq.  (2.63) into Eq.  (2.57), the electric field 

distribution on the aperture plane is obtained as: 
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0 2 2
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∑

 (2.64)  

In order to simplify and summarize the terms in Eq.  (2.64), several parameters are introduced as 

follows:  
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1

( )
dg

R z
= +  (2.65)  

The coefficient of the exponent in the above summation is obtained in term of g. 
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(2.66)  

where 

 2
0

2
m

m
k wd =  (2.67)  

and 

 
1tan m

m

d
d
g

θ −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.68)  

Now the exponential function in the Eq.  (2.64) can be rewritten in a new form in terms of new 

defined parameters as: 
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(2.69) 

where the two new parameters are defined as follows: 
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and  
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Hence, the electric field distribution on the aperture plane is obtained as: 
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(2.72)

where (x2+y2 ) in previous equations has been replaced with r2. 

In the Z-scan experiment the sample (a transparent solid or a cuvette filled with a liquid) is 

moved along the beam propagation direction (considered as z axis) from a pre-focus position to a 

post-focus position. The energy transmitted through an aperture located in the far field is 

measured by a photo-diode as a function of sample position z and then, the transmittance T is 

plotted versus z. 

The normalized transmittance is defined as the entire transmittance divided by its maximum 
occurring at the positions far enough from the focal point where the intensity is not high enough 
for the nonlinear refraction to occur so that the phase distortion is negligible and the 
transmittance remains constant. 

 
P( )

( )
P( 0)

dt
T z

dt

+∞

−∞
+∞

−∞

ΔΦ
=

ΔΦ =

∫
∫

 (2.73)  

where P is the power transmitted through an aperture of radius a given by: 
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P(t) ( , ) 2
a

I r t r drπ= ∫  (2.74)  

Where ( )I t denotes the intensity of the electric field which is related to the electric field 

amplitude through 2
0 0

1( , ) ( , )
2

I r t c n E r tε= . Hence, the power transmitted through an aperture 

of radius a is obtained from: 

 2

0 0 0
P(t) ( , )

a
c n E r t r drπ ε= ∫  (2.75)  

The normalized transmittance is now given by the following in terms of electric field amplitude 
on the aperture plane.  
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(2.76)  

By replacing the electric field from Eq.  (2.72) into  (2.76), the normalized transmittance can be 
calculated although this is not an easy task. For the (very) small aperture limit, the on-axis 
electric field on the aperture plane can be calculated by setting r=0 in Eq.  (2.72). Therefore, the 
on-axis transmittance defined as the transmitted energy through a very small aperture centered 
on the optical axis can be easily calculated. 

It should be mentioned that the electric field in Eq.  (2.76) contains spatial as well as temporal 
parts. The temporal profile of the electric field should also be identified. For the sake of 
simplicity, the on-axis normalized transmittance for temporally square pulses, which behave like 
CW laser light, is first calculated. For these limitations the electric field is no longer a function of 
r and t. Thus, the electric field in Eq.  (2.76) can be brought out of integral and then both integrals 
in the numerator and denominator of Eq.  (2.76) are vanished. So 

 2
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0 2
0

( , 0, 0, )
( , )

( , 0, 0, 0)

a

a

E z r t
T z

E z r t

= = ΔΦ
ΔΦ =

= = ΔΦ =
 (2.77)  

In the limit of small nonlinear phase change, 0 1ΔΦ << , only the first two terms in Eq.  (2.72) is 

adequate to retain. The far field approximation in which 
0

1d
z

>>  is also assumed. Therefore 

Ali
Sticky Note
this is held for a circular beam focused by a spherical lens. in case of using a cylidrical lens the surface eleman would change to  y.dx
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where
01 3d d= . The numerator of the above equation is calculated as: 
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(2.79) 

In the limit of a small nonlinear phase shift the phase distortion square is much smaller than the 
phase distortion itself. Therefore, those terms in the above equation containing 2

0Δ Φ  are 
negligible compared to the other terms and ignored. Hence, the numerator of the Eq.  (2.78) is 
calculated as: 
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 (2.80)  

The denominator of Eq.  (2.78) is calculated as: 
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 (2.81)  

After dividing Eq.  (2.80) by Eq.  (2.81) the normalized transmittance is obtained in the following 
form: 
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(2.82)  

It should be reminded that g was previously defined as1 ( )d R z+ . For the far field 
approximation, in which the aperture plane is far enough away from the focal plane, it can be 
shown that ( )g d R z≅  is a reasonable approximation.  
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After substitution of Eq.  (2.85) and  (2.86) into Eq.  (2.82), the normalized transmittance is 
obtained to  
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0 2

4 ( )( , ) 1
( 9)
x zT z
x
ΔΦ

ΔΦ = +
+

 (2.87)  

where 0
0 2( )

1
z

x
ΔΦ

ΔΦ =
+

. Therefore, the normalized transmittance as a function of the sample 

position is given as: 

 0
0 2 2

4( , ) 1
( 1)( 9)

xT z
x x

ΔΦ
ΔΦ = +

+ +
 (2.88)  

where 0 2 0effkn L IΔΦ = , k is the wave number, Leff is the effective length of the sample, I0 is the 

on-axis intensity at the focus and n2 is the nonlinear refractive index which is supposed to be 

measured.  

So far, temporally square pulses with pulse duration longer than the nonlinear response time 
have been assumed. These kinds of pulses are treated similar to CW laser radiation for which the 
nonlinearity reaches the steady state. Now, the steady state results are extended to include 
transient effect induced by pulsed radiation. For this purpose the pulse temporal behavior must 
be specified. The most frequently produced laser pulse known as Gaussian pulse is now 
examined. It is also assumed that the nonlinear medium has an instantaneous response and decay 
time relative to the pulse width of the laser pulses. Thus, the on-axis normalized transmittance is 
derived from Eq.  (2.76) as 
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∫

 (2.89)  

In the limit of small nonlinear phase distortion, only the first two terms in the summation  (2.72) 
is adequate to be retained. Under this assumption the on-axis normalized transmittance can be 
written as 
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(2.90) 

After performing some lengthy calculation, similar to that completed for the CW radiation case, 
the following equation is obtained. 
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So the on-axis normalized transmittance assuming a temporally Gaussian pulse is given as: 
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(2.92)  

where 0 2 0(0) (0)effk n L IΔΦ =  and I0(0) is the peak on-axis intensity at the focus. 

The only difference between Equations  (2.88) and  (2.92) is that ΔΦ0 has been replaced with
0 (0) 2ΔΦ . That is not astonishing because Eq.  (2.88) has been derived for CW irradiation 

whereas in the pulse radiation case, phase change ΔΦ0 must be replaced by the time averaged 
phase change <ΔΦ0(t)> over the pulse duration. The time averaged phase change is defined as 
follows: 
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 (2.93)  
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Assuming a temporally Gaussian pulse, where
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= , the time averaged amount of 
phase change is obtained as 
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Therefore, the coefficient 1/√2 in Eq.  (2.92) is a consequence of time averaging for Gaussian 

pulses. 

It was previously mentioned that the closed aperture Z-scan transmittance has two extrema (one 
peak and one valley). The positions of these extrema can be found by solving the following 
equation: 
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x x x x x x x

x x

= ⇒

+ + − + + + = ⇒

+ − =

 (2.95)  

With the substitution y=x2 the above equation results in a quadratic equation. 
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5 52
3

52 5
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y y
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−
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(2.96)  

Therefore, the position of extrema will be: 

 
0 (p v) 0

0
0.858 0.858 1.717m

zx z z z z
z →= = ± ⇒ = ± ⇒ Δ =  (2.97)  

It should be noticed that the position of the extrema does not depend on the temporal behavior of 
radiation such that these extrema occur at the same position for both CW and Gaussian pulse 
radiation. 
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Knowing the extremes positions enables one to calculate the maximum and minimum 
transmittance and then the difference between them. That is: 
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Δ = ΔΦ
 (2.98)  

As seen in Eq.  (2.98), the transmittance has a linear relationship with the phase distortion. 
Utilizing this relation simply yields the nonlinear refractive index without any need to fit the Z-
scan data to the theoretical formula. One should notice that the coefficient in Eq.  (2.98) was 
obtained assuming a small aperture size and also a small phase change. In chapter 3, it will be 
shown that this coefficient depends on the aperture size and decreases as the size of aperture 
increases.  

2.2.2.     Closed aperture Z-scan for fifth order nonlinearity 

In this section, the fifth order nonlinearity is examined where the change in the index of 
refraction is proportional to the intensity square whereas, the refractive index change was 
proportional to the intensity itself in case of third order nonlinearity. Fifth order nonlinearity 
can be observed in semiconductors where the index of refraction is altered through charge 
carriers generated by 2PA [43].  

Under the assumption that the nonlinear absorption of the sample is negligible and its thickness 
is small enough, such that the electric field amplitude changes only due to the linear absorption, 
the following pair of equations leads to determine the electric field amplitude √I and phase 

change Δψ within the sample.  

 

 
0'

dI I
dz

α= −
  (2.99)  

and  

 2
4

( )
'

d k n I
dz
ΔΨ

=  (2.100)  

The intensity attenuation within the sample due to linear absorption is described by the following 
equation 

 0 '( ') zI z I e α−=  (2.101)  
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Therefore the entire phase distortion for the laser beam traveling through the sample of length L  
can be obtained by calculating the following integral.         

 02 '2 2
4 40 0

( ') ' ( , , ) '
L L zk n I z dz k n I z r t e dzα−ΔΨ = =∫ ∫  (2.102)  

 2
4 ' ( , , )effk n L I z r tΔΨ =

 (2.103)  

 where 'effL  is known as the effective length of the sample given by                       

 02
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eL

α

α

−−
=  (2.104)  

where L is the physical length of the sample and α is the linear absorption coefficient. 

By substituting 2 ( , , )I z r t  in Eq.  (2.103) the phase change is obtained as 

 2

24
( )( , , ) ( , 0, )
r

w zz r t z r t e
−

ΔΨ = ΔΨ =  (2.105)  

where  

 

( )
0

22

( )( , 0, )
1

tz r t
x

ΔΨ
ΔΨ = =

+
 

(2.106)  

and  

 2
0 4 0( ) ' ( )efft k n L I tΔΨ =  (2.107)  

The complex electric field exiting the sample now can be written as  

 2
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 (2.108)  

where E(z,r,t) is the electric field amplitude at the entering surface of the sample, the second 
terms is an attenuation factor due to the linear absorption within the sample and the third term 
contains nonlinear phase change. 



53 

 

Exponential term in Eq.  (2.108) can be expanded employing a Taylor series expansion with 
respect to a certain coordinates where the argument is zer. That is 
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Separating the longitudinal and lateral distribution of the incident electric field in the equation 
above gives the exiting electric field as   
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(2.110) 

which is similar to the exiting electric field in Eq.  (2.52). The exiting electric field in the above 
equation has been expressed as a sum of an infinite number of Gaussian beams propagating in z 
direction with the same wavefront curvature radius but with different electric field amplitudes 
and also different beam radii. The radius of the mth beam is given by ( ) (4 1)w z m + . All these 
Gaussian beams propagate through the free space to reach the aperture plane and then superpose 
to reconstruct the Gaussian beam distribution on the aperture plane.    

To obtain the electric field distribution on the aperture plane, a calculation similar to what was 
done previously in section 2.2.1 (Equations  (2.54) to  (2.72)) can be performed: 
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(2.111)  

where  

 2
2

0
( )

4 1m
w zw

m
=

+
 (2.112)  

In Eq.  (2.111) g, dm, θm, Rm and wm have the same meaning as given in Eqs.  (2.65),  (2.67),  (2.68), 
 (2.70) and  (2.71). One should note that all the mentioned parameters contain wm0 which is 
defined in Eq.  (2.112). It should also be noticed that z is the sample position whereas r is 
transverse component on the aperture plane measured with respect to the optical axis. 

The on-axis normalized Z-scan transmittance for fifth order nonlinearity assuming small phase 
distortion and also CW radiation can be written similar to Eq.  (2.78) as follows      
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After lengthy calculation like the one performed in section 2.2.1 assuming far field 
approximation d > z0, the normalized transmittance is obtained as follows 
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xT z
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where  

 2
0 4 0'effk n L IΔΨ =  (2.115)  

And for the temporally Gaussian pulsed radiation, 0

3
ΔΨ

 
will replace ΔΨ0 so that the 

transmittance is given as                                                  

 0
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(0)8
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( ) 1
( 1) ( 25)

x
T z

x x

ΔΨ
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+ +

 (2.116)  

where 2
0 4 0(0) ' (0)effk n L IΔΨ =  and I0(0) is the peak on-axis intensity at the focus.  

When Eq.  (2.116) is fitted to the experimental data, the nonlinear refractive index is extracted. 
The plot of transmittance versus the sample position has two extrema.  If there is a peak followed 
by a valley, it indicates self defocusing that means 4 0n <  and if there is a valley followed by a 
peak, it indicates self focusing that means 4 0n > . 

It should be noted that the plot is symmetric implying that the maximum and minimum 
transmittance occur at the same distance from the focal plane. The position of extrema can be 
found by solving the following differential equation.             
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The distance between the position of maximum and minimum transmittance is obtained as 
follows                                                                                                                  

 01.135p vz z→Δ =  (2.118)  

The above distance does not depend on the temporal behavior of the light radiation. 

By substituting the position of extrema in the Eq.  (2.86) the maximum and minimum 
transmittance and thus the difference between them is obtained as follows 

 00.205p vT →Δ = ΔΨ  (2.119)  

By using the above linear equation the nonlinear index of refraction can be simply obtained 
without need for further calculation such as performing fitting process. 

2.2.3.     Closed aperture Z-scan for simultaneous third and fifth order 
nonlinearity 

In this section, the simultaneous presence of third and fifth order nonlinearity will be examined. 
If the sample length is small and the nonlinear absorption is also negligible then the following 
pair of equations gives the amplitude and phase of electric field within the sample.  

 
0'

dI I
dz

α= −  (2.120)  

 2
2 4

( )
'
totd k n I k n I

dz
ΔΦ

= +
 (2.121)  

The phase distortion arose from third order nonlinearity and fifth order nonlinearity has been 
separately calculated in sections 2.2.1 and 2.2.2. Therefore, the entire phase change is the 
superposition of both individual cases as follows: 

 2
2 4( , , ) ( , ,, ) ' ( , , )tot eff effz r t k n L I z r t k n L I z r tΔΦ = +  (2.122)  

After substitution of the intensity in Eq.  (2.122), the phase change is given as: 
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 2 2

2 22 4
( ) ( )

0 0( , , ) ( , ) ( , )
r r

w z w z
tot z r t z t e z t e

− −
ΔΦ = ΔΦ +ΔΨ  (2.123)  

Where 0 ( , )z tΔΦ  and 0 ( , )z tΔΨ  have been defined in Equations  (2.50) and  (2.106). 

Hence, the complex electric field exiting the sample is given as: 

 2 2

2 20
1 2 4

( ) ( )2
0 0( , , ) ( , , ) exp ( , ) exp ( , )

r r
L w z w z

eE z r t E z r t e i z t e i z t e
α − −−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − ΔΦ − ΔΨ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.124) 

By expanding the two exponential in above equation using the Taylor series expansion the 
existing electric field is written as 
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 (2.125)  

Now, separating the axial and radial part of electric field will lead to 
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 (2.126)  

where  

 2
2

0
( )

2 4 1mn
w zw

m n
=

+ +
 (2.127)  

By using Gaussian decomposition and Huygens integrals the electric field distribution on the 
aperture plane placed at distance d from the sample is obtained as follows: 
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where 

 
0 1mnimn

mn

mn

w e dw g i
d

θ⎛ ⎞
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⎝ ⎠ −
 

(2.129)  

and 

 2
0 00

2 2 4 1
mn

mn
k w dd

m n
= =

+ +
 (2.130)  

The on-axis normalized transmittance for CW radiation assuming a small phase distortion (ΔΦ2, 
Δψ2 and ΔΦ.Δψ are negligible) can be written as 

 2

0 0

00 00 00
2

00

1 1 1
3 5

( )

1

i id d dg i g i g i
d d d

T z

dg i
d

− ΔΦ − ΔΨ
− − −

=

−

 (2.131)  

After a lengthy calculation the Z-scan normalized transmittance of a medium, in which both third 
and fifth order nonlinearities occur, is obtained as 

 0 0
2 2 2 2 2

4 8( ) 1
( 1)( 9) ( 1) ( 25)

x xT z
x x x x

ΔΦ ΔΨ
= + +

+ + + +
 (2.132)  

As seen in Eq.  (2.132) the transmittance for concurrent third and fifth order nonlinearities is the 
superposition of both individual nonlinearities given in Equations  (2.92) and  (2.116).  
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 ( ) 1 ( ) ( ) ( )total third fifthT z T z T z T z− = Δ = Δ + Δ  (2.133)  

And the normalized transmittance for the temporally Gaussian pulsed radiation will be given as  

 0 0

2 2 2 2 2

(0) (0)4 82 3( ) 1
( 1) ( 9) ( 1) ( 25)

x x
T z

x x x x

ΔΦ ΔΨ

= + +
+ + + +

 (2.134)  

The trace of transmittance given by Eq.  (2.134) is also symmetric having two extrema. The 
position of extrema is obtained by solving the following differential equation: 

 12 10 8 6 4 2

0

( ) 0 3 171 2860 12606 15795 1769 7650 0

0.72 1.44p v

dT x x x x x x x
dx

x z z→

= ⇒ + + + + − − =

= ± ⇒ Δ =
 (2.135)  

The difference between maximum and minimum transmittance depending on both third order 
nonlinear phase shift and fifth order nonlinear phase shift is given by 

 0 00.4 ( ) 0.2 ( )p vT t t→Δ = ΔΦ + ΔΨ  (2.136)  

In practice, the above relation is only helpful when one of the nonlinear phase shifts is already 
known.  

 

 

Fig.  2.5. Closed aperture Z-scan normalized transmittance curve. Red curve corresponds to ΔΦ=1 (Rad) for third 
order nonlinearity, blue curve corresponds to Δψ=1.4 (Rad) for fifth order nonlinearity and green curves 
corresponds to ΔΦ=0.5 and Δψ=0.7 for concurrent third and fifth order nonlinearity. 
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Fig. 2.5 shows the normalized Z-scan transmittance for third order nonlinearity (red curve), fifth 
order nonlinearity (blue curve) concurrent third and fifth order nonlinearity. The distance 
between maximum transmittance and minimum transmittance position is seen different as 
calculated previously (Δzthird=1.717 z0, Δzfifth=1.135 z0, Δzthird and fifth=1.44 z0). The normalized 
transmittance for third order nonlinearity is wider than that of fifth order nonlinearity. This is due 
to this fact that the nonlinear refractive index change is proportional to intensity for third order 
nonlinearity whereas it depends quadratically on the irradiance for fifth order nonlinearity. Fig. 
 2.6 illustrate intensity (red curve) and intensity square (blue curve) versus lateral position. This 
illustration helps one to better understand why the normalized transmittance for third order 
nonlinearity is wider than that for fifth order nonlinearity. The square of intensity decreases more 
rapidly than the intensity itself as the transverse component increases. 

    

 

Fig.  2.6. Spatially Gaussian intensity distribution (red curve) and its square (blue curve) versus lateral position. 

2.3.     Open aperture Z-scan 

2.3.1.     Nonlinear absorption  

Molecular systems can interact with optical fields in two ways, namely by: 1) dissipative or 
resonant processes and 2) parametric or non-resonant processes. If the energy and momentum 
from the light beam are exchanged between different longitudinal modes of the optical field but 
no energy is exchanged between the optical field and molecules in the system (e.g. second 
harmonic generation), this process is called parametric or non-resonant. However, in dissipative 
or resonant processes, the energy and momentum is exchanged between the optical field and 
molecules in the system through absorption and emission. Therefore, dissipative or resonant 
nonlinear processes are related to multi-photon absorption such as two-photon or three-photon 
absorption [44]. 

In the parametric processes, the frequency of the light is far from any internal resonant frequency 
of the molecular oscillating dipoles. The energy of the electric field of the light wave perturbs the 
electron cloud of the molecules, causing a change in the oscillations of the electron spring, which 
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immediately transfers the energy of the optical field to other modes. This instantaneous 
perturbation-excitation of the molecules is called a “virtual transition”. In virtual transition, the 
energy of the photon is actually stored in the electronic springs of the molecules for a short time, 
whereby it can remain coherent with the light field and hence the light emitted in a new mode is 
coherent with the incident light in the previous mode. This is the main different between the 
parametric and dissipative processes.  

In dissipative processes, the frequency of the incident light is close to an internal resonant 
frequency of the molecular oscillating dipoles so that the time for which the energy of the photon 
spends in the excited state of the molecules becomes longer and the stored energy is no longer 
coherent with the incident optical field, and the physics associated with the virtual transitions no 
longer apply and real transitions occur which result in energy absorption. 

In the expression for the polarization in Eq.  (1.1), the even-order susceptibility such as χ(2), χ(4) 
etc, do not contribute to the dissipative processes except in the case of a DC field. Therefore, the 
lowest-order nonlinear absorption is described by the imaginary part of the χ(3) which 
corresponds to 2PA. The imaginary part of χ(5) relates to 3PA. 

Now, the attempt is made to derive the relation between the two- and three-photon absorption 
coefficient and the imaginary part of the third- and fifth-order susceptibility.  

For a dissipative process at the presence of a monochromatic field the polarization is given by 

 ( )(1) (3) 3 (5) 5
0 cos ( ) ( cos ( )) ( cos ( )) ...p E t E t E tε χ ω χ ω χ ω= + + +  (2.137)  

The polarization in Eq.  (2.137) contains components oscillating at frequencies ω, 3ω, 5ω and 
higher harmonics whereas the applied electric field oscillates at frequency ω. The effective first 
order susceptibility, from which the index of refraction and absorption coefficient are calculated, 
is a proportionality coefficient between induced polarization and the driven electric field.  
Neglecting the higher order nonlinearity and also higher harmonic terms in Eq.  (2.137) will lead 
to the following. 

 (1) (1) 2 (3) 4 (5)
0

3 5( ) ( ) cos( )
4 8

p t E E E tω ε χ χ χ ω= + +  (2.138)  

The effective first order susceptibility is now modified such that it contains two additional terms 
arising from the third- and fifth-order nonlinearity. Therefore, the complex refractive index is 
now given by  

 
(1) (1) (3) 2 (5) 43 51 1

4 8effn E Eχ χ χ χ= + = + + +  (2.139)  

The real part of susceptibility relates to the index of refraction whereas the imaginary part relates 
to the absorption coefficient. Therefore, the complex refractive index can be written as 
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(1) (3) 2 (5) 4 (1) (3) 2 (5) 43 5 3 51

4 8 4 8R R R I I In E E i E Eχ χ χ χ χ χ⎛ ⎞ ⎛ ⎞= + + + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.140)  

Exploiting this fact that the imaginary part of the complex refractive index is always smaller than 
its real part allows us to separate the real and imaginary parts of the complex refractive index 
using the following approximation. 

(1) (3) 2 (5) 4

(1) (3) 2 (5) 4

(1) (3) 2 (5) 4

3 5
3 5 4 81
4 8 3 52 1

4 8

I I I

R I R R R

R R R

E E
n n i n E E i

E E

χ χ χ
χ χ χ

χ χ χ

+ +
= + = + + + +

+ + +

 
(2.141) 

The real part of the complex refractive index can be expressed in terms of the linear and 
nonlinear refractive indices as follows: 

 (3) 2 (5) 4
(1)

(1) (1)

3 51
8 1 16 1

R R
R R

R R

E En χ χχ
χ χ

= + + +
+ +

 
(2.142)  

 (3) (5) 2
2

0 0 2 42 3 2 2
0 0 0 0

3 5
4 4

R R
R

I In n n n I n I
n c n c
χ χ

ε ε
= + + = + +

 
(2.143)  

where the nonlinear index for third and fifth order nonlinearities are defined as follows 
respectively 

 

 

(3)

2 2
0 0
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n c
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ε

=
  

 

(2.144)  

and 

 
 

(5)

4 3 2 2
0 0

5
4

Rn
n c

χ
ε

=   (2.145)  

With a good approximation, the imaginary part of the complex refractive index can be written as: 
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 (2.146)  

The absorption coefficient is connected to the imaginary part of the complex refractive index 
through the following relation.  

 
 2

0 2 3
2( ) II n I I
c
ωα α α α= = + +   (2.147)  

where the linear absorption coefficient is defined as: 

 
 

(1)

0
0

I

c n
ω χα =   (2.148)  

The 2PA coefficient is an intrinsic property of a medium at a particular frequency describing the 
efficiency of the ground state molecules to reach an excited state via simultaneous absorption of 
two photons. Comparison between Equations  (2.146) and  (2.147) allows one to determine the 
relation between nonlinear absorption coefficients and nonlinear susceptibilities as given in 
Equations  (2.149) and  (2.151). 

 

 

(3)

2 2 2
0 0

3
2

I

n c
ω χα

ε
=

  (2.149)  

2PA coefficient depends on the number of absorbing molecules within the irradiated region of a 
medium and thus it depends on the concentration of absorbing particles. Since a liquid 
compound can be prepared with different concentrations, thus a concentration independent 
variable called 2PA cross section is defined for liquids as follows: 

   

2 2
2 310AN N

ω α ω α
σ

ρ −= =
×

h h
 

(2.150)  

where ω is the angular frequency of the incident beam, NA is Avogadro number and ρ is the 
concentration of compound in mole per liter. The unit of σ in SI is cm4.sec but it is usually given 
in the units of Goeppert-Mayer (GM) where 1 GM=10-50 cm4.sec. 
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The 3PA coefficient defined as the probability of simultaneous absorption of three photons at 
frequency ω is obtained as: 

  

 
(5)

3 3 3 2
0

5
2

I

n c
ω χα

ε
=   

(2.151)  

Since the 3PA coefficient is also a concentration dependent variable, a concentration 
independent variable for 3PA process is defined as 3PA cross section given by  

 2 2
3 3

3 3

( ) ( )
10AN N

ω α ω α
σ

ρ −= =
×

h h  
(2.152)  

The unit of 3PA cross section in SI is cm6.s2. 

  

2.3.2.     Open aperture Z-scan at the presence of two-photon absorption  

Two-photon absorption is a third-order nonlinear resonance process where two photons are 
absorbed nearly simultaneously to excite the subject molecule to a real higher energy level. If a 
two-photon transition between two levels is allowed, one-photon transition between these two 
levels (by absorbing a photon at frequency twice larger) is forbidden due to the selection rules. 

Since 2PA is a third-order process it is described by χ(3) and thus, 2PA coefficient α2 and 2PA 
cross section σ relate to the imaginary part of χ(3). The 2PA cross section σ describes the 
efficiency of a particular molecule in the ground state to reach the excited state via a 2PA 
process and is related to α2 by Eq.  (2.150). 

A cubic nonlinearity is a nonlinear response in which the the absorption coefficient and index of 
refraction are no longer constant but variy with the incident light intensity as follows.  

 0 2( )I Iα α α= +  (2.153)  

For a thin sample the intensity of the light beam within the sample is attenuated only due to 
absorption including linear and nonlinear absorption.  Hence, the intensity of light beam as a 
function of z' within the sample is governed by the following simple equation.  

 ( )0 2( )
'

dI I I I I
dz

α α α= − = − +  (2.154)  
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In order to obtain the light intensity within the sample, both side of above equation should be 
integrated. That is: 

 

( )
( ') '

( ) 0
2 0

'
I z z

I z

dI dz
I Iα α

= −
+∫ ∫  

(2.155)  

The light intensity reduction along the light propagation direction is described by the following 
relation                                                                                  

 0
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0
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0 2 2

( )
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( ) ( )
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z

I z e
I z

I z I z e

α

α

α

α α α

−

−=
+ −

 
(2.156)  

where I(z) is the intensity of incident light on the entrance surface of the sample (z'=0) when the 
sample is placed at the position z.  

 

Fig.  2.7. The intensity versus propagation length within the sample at the presence of 2PA (red curve) and at the 
absence of 2PA (blue curve) for lower incident intensity (dashed curves) and higher incident intensity (solid curves) 
for comparison 

In Fig.  2.7 the intensity is plotted versus propagation length in a typical nonlinear medium. Blue 
curves indicate intensity attenuating due to only linear absorption whereas the red curves 
illustrate a more rapidly attenuation in intensity since 2PA also contributes to the whole 
absorption. As can be seen from Fig.  2.7, 2PA does not contribute too much to the absorption at 
low intensities. As the incident intensity increases the contribution of 2PA becomes more 
significant and the rate of intensity attenuation at the presence of 2PA highly differs from that at 
the absence of 2PA.    

The sample is assumed thin. In a thin sample the changes in the beam diameter due to either 
diffraction or nonlinear refraction is negligible and thus, the change in intensity is only due to 
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linear and nonlinear absorption. When the sample is moved along the propagation direction of a 
focused laser beam from pre-focus to post-focus positions the intensity of the laser beam changes 
that leads to a change in absorption coefficient and consequently in transmittance. The Z-scan 
transmittance as a function of sample position is expected to be a symmetric V-shape trace 
indicating a maximum absorption occurring at the focal point where the sample experiences the 
highest intensity in a Z-scan.  

According to Eq.  (2.156), the intensity on the exit surface of a thin sample of length L  is 
obtained as 
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(2.157)  

where  

 2( , , ) ( , , ) effq z r t I z r t Lα=  (2.158)  

and 

 0

0

1 L

eff
eL

α

α

−−
=  (2.159)  

I(z,r,t) is the incident intensity at the entrance surface of the sample when the sample is placed at 
the position z.  

In order to calculate the normalized transmittance, the transmitted power through the nonlinear 
medium must be first obtained by calculating the following integral. 
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+∫ (2.160)  

where the incident intensity I(z,r,t) of a Gassian beam is given by  

 2

22
( )

0( , , ) ( , )
r

w zI z r t I z t e
−

=  (2.161)  

Thus, the intensity differential dI can be obtained as  
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Changing the differential element from dr to dI will makes the calculation of Eq.  (2.160) much 
more convenient.  
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(2.166)  
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Assuming a temporally Gaussian pulse, the time dependent and position dependent parts of q(z,t) 
can be separated as follows 

 2
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Eq.  (2.167) is now rewritten by substitution q from  (2.168).                    
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The normalized transmittance as the quotient of the transmitted energy to the incident energy is 
now obtained as: 
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where 
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In the limit of q0<1 (which can be controlled by adjusting the light intensity) the term 
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 in Eq.  (2.170) can be expanded using the Taylor series expansion as 

follows:              

 2

2

2

2

1
4ln 2

0
4ln 2

0
0

( ,0)

ln 1 ( ,0) ( 1)
1

n
t

t
n

n

q z e

q z e
n

τ

τ

+
−

∞−

=

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎜ ⎟
⎝ ⎠⎜ ⎟+ = −⎜ ⎟ +⎜ ⎟

⎝ ⎠
∑  

(2.172)  

Fig.  2.8 shows the logarithm in the left hand side of Eq.  (2.172) (green curve) and its Taylor 
series expansion (red and blue curves) as a function of q0. The red and blue curves show the sum 
of the first 16 and 17 terms in the Taylor series summation respectively. Note that, for q0 > 1, as 
q0 grows the difference between the values of the Taylor polynomials and the original function 
increases rapidly. However, the Taylor polynomials for q0<1 represents an acceptable 
approximation. 
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Fig.  2.8. Green curve shows the plot of ln(1+ q0) versus q0 and the red and blue curves show the sum of the first 16 
and 17 terms of its Taylor series 

After substitution Eq.  (2.172) in Eq.  (2.170) the transmittance is obtained as: 
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where                   
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(2.176)  

and  

 0 2 0effq L Iα=  (2.177)  
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where 0 ( 0, 0, 0)I I t r z= = = =  is the maximum on-axis intensity at the focus. Therefore, the 
normalized transmittance as a function of sample position is given by 

 
 ( )

( ) ( )
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3 220
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1 1

n

n
n

q
T z

n x

∞

=

−
=

+ +
∑ (2.178)  

where x is the dimensionless parameter z/z0. 

As mentioned above I0 is the peak intensity at the focus which is not a measurable parameter. In 
order to calculate I0 some measurable laser parameters such as laser output power, pulse duration 
and beam waist radius must be given. It is worth to mention that the pulse duration and beam 
waist radius depends on the spatial and temporal energy distribution of the pulsed laser beam.   

In order to find the relation between I0 and its respective measurable laser parameter, it can be 
started from  

 2

24ln2

0P(t) P
t

e τ
−

=  (2.179)  

where P(t) denots the power of a temporally Gaussian pulse and τ is the pulse width (duration) 
defined as full width at half maximum (FWHM). 

The average power over pulse duration is defined as the quotient of pulse energy to the pulse 
width as follows:   
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24ln 2

0- -
0

 P(t) P
P P

4ln 2

t
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dt e dtτ
π

τ τ

−+∞ +∞

∞ ∞= = =
∫ ∫

 (2.180)  

On the other hand and from the empirical point of view, the average power over pulse duration 
or so-called peak power is given by: 

 

 PP pulse out
aver

E
Rτ τ

= =  (2.181)  

where Pout  is the laser output power and R is the repetition rate. 

Therefore, the relation between the maximum peak power and the laser output power is given by 
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The peak intensity, referred to as the maximum intensity at the middle of a temporally Gaussian 
pulse, is the desired variable to be found. For a spatially Gaussian laser beam, the relation 
between power and intensity is given by                                                                     

 2
0

0P( ) ( )
2
wt I tπ

=  (2.183)  
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0 2 2 2 2
0 0 0 0
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= = = =

 
(2.184)  

I0 is called peak on-axis intensity at the focus that means the intensity at t=0, r=0 and z=0, E is 
the pulse energy, z0 is the Rayleigh range that depends on the focal length of the focusing lens 
and M2 is the beam quality factor that is equal to unity for an ideal Gaussian beam and bigger 
than one for a real Gaussian beam. 

With a good approximation, one can retain the first two terms in Eq.  (2.178) and ignore the 
higher order exponents. Following this approximation the transmittance is simply given by the 
below equation indicating that the maximum absorption, occurring at the focus, scales linearly 
with the peak on-axis intensity as shown in Fig.  2.9. 

 

( )
0 0

max min 03 2 3 3
( ) 1 1

2 1 2 2
eff effL I L qT z A T I

x

β β⎛ ⎞
⎜ ⎟= − ⇒ = − = =
⎜ ⎟+ ⎝ ⎠

 (2.185)  

where Amax and Tmin are the maximum absorption and minimum transmittance occurring at the 
focal point of the focused laser beam.                                   
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Fig.  2.9. Normalized open aperture Z-scan Transmittance versus the sample position plotted for different q0 

It must be mentioned that the expansion in Eq.  (2.172) was achieved under criterion of q0<1 and 
consequently the final Eq.  (2.178) can only be employed in this limitation. The minimum 
transmittance in Eq.  (2.178) assuming q0=1 is 0.765. This means that it is only allowed to 
employ this equation to extract the 2PA coefficient if the transmittance is higher than 0.765 or, 
on the other words, the absorption is lower than 0.235.  

 

2.3.3.     Open aperture Z-scan at the presence of three-photon absorption  

3PA is a fifth-order nonlinear resonance process where three photons are absorbed 
simultaneously to excite the irradiated molecule to a real exited state. Since 3PA is a fifth-order 
process, it is described by χ(5). 

At the presence of 3PA and absence of 2PA, the variation of the intensity of a laser beam 
propagating through a thin sample is simply governed by                                                        

 ( )2
0 3'

dI I I
dz

α α= − +  (2.186)  

where α3 is called 3PA coefficient.  
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 (2.187)  
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The light intensity within the sample is then obtained as follows. 
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where I(z) is the incident intensity at the entrance surface of the sample. 

The light intensity exiting the sample of length L is now given as [45].  

 0
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( , , )( , , )
1 ( , , )

L

e
I z r t eI z r t

p z r t
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(2.190)  

where  

 
3( , , ) 2 ' ( , , )effp z r t L I z r tα=  (2.191)  

and 'effL  is referred to as the effective length of the sample given by 
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α

α

−−
=  (2.192)  

If the frequency of applied radiation is far from the absorption band of irradiated material the 
linear absorption is negligible and thus the linear absorption coefficient α0 is almost zero. In this 
limit the effective length of the sample is identical to its physical length and thus the Eq.  (2.190) 
can be written as 

 0
2

3 0

( ' )
1 2 '

II z
z Iα

=
+

 
(2.193)  

 



73 

 

 

Fig.  2.10. Intensity versus propagation length at the presence of only 2PA (blue curve) and only 3PA (red curve) by 
letting linear absorption coefficient equal to zero for both cases 

Fig.  2.10 shows the intensity within a nonlinear medium as a function of propagation length. The 
3PA coefficient is considered high enough such that the 3PA exceeds the 2PA assuming a certain 
high enough intensity. As can be seen in the above figure for a higher intensity the rate of 3PA is 
larger than the rate of 2PA. On the other word, the intensity is reduced more rapidly in case of 
3PA than in case of 2PA as the light propagates though the nonlinear medium.  Therefore, after 
traveling some distance through the medium, when the intensity is much lower than the incident 
intensity, the rate of 3PA becomes smaller than the rate of 2PA. This behavior is due to the fact 
that 3PA depends on the intensity in a cubic way, rather than quadratic as for 2PA.  

In order to better illustrate the different intensity dependent of 3PA and 2PA the intensity exiting 
a nonlinear medium is shown as a function of incident intensity in Fig.  2.11 for both cases of 
2PA and 3PA. At low intensities the rate of 3PA is lower than that of 2PA. But this rate increases 
with incident intensity, such that the saturated exiting intensity for the case of 3PA is lower than 
that for the case of 2PA. This suggests that three-photon absorbing materials are more reliable 
and efficient than two-photon absorbers for optical limiting if they possess a high enough 3PA 
probability. 
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Fig.  2.11. Exiting intensity from a nonlinear medium of 1 cm length versus incident intensity. Blue curve shows the 
exiting intensity at the presence of 2PA and red curve at the presence of 3PA 

The power exiting the sample can be calculated by integrating the exiting intensity over the 
exiting surface of the sample.    
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Since intensity is a function of r (distance from the optical axis) hence the redial element dr can 
be calculated as a function of intensity differential dI.  
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Therefore  
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After substitution from Eq.  (2.197) into Eq.  (2.194) the exiting power is obtained as: 
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Where ( , )p z t was defined in Eq.  (2.191). It should also be mentioned that the energy 
conservation given by the following has been utilized.  
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where iP ( )t  is the incident power.  

The normalized transmittance is defined as the quotient of the exiting energy to the incident 
energy as follows: 
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(2.203)  

a temporally Gaussian pulse as 
2

( , ) ( ,0) tI z t I z e−= has been assumed. 

So: 
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where  
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(2.205)  

and I0 is the maximum on-axis intensity at the focus.  

Eq.  (2.204) gives the normalized transmittance as a function of sample position. When this 
equation is fitted to the experimental Z-scan data the desired parameter as 3PA coefficient is 
obtained. 

Eq.  (2.204) can be simplified in the limit of P0<1. Under this assumption, the logarithm in Eq. 
 (2.204) can be expanded using Taylor series expansion using the following formula: 
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xx x
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=

+ + = −
+∑   (2.206)  

Fig.  2.12 (red curve) shows the logarithm on the left hand side of above equation (blue curve) 
and its Taylor series expansion as a function of x. It demonstrates that the difference between the 
amount of these two functions increases with x.  For instance employing the above Taylor series 
as an approximated function instead of the logarithm as the original function leads to 10% error 
when x=1.2 and even 20% when x=1.5.  

 

Fig.  2.12. Blue curve shows the logarithm on the left hand side of Eq.  (2.206) and the red curve shows it Taylor 
series expansion  

Substituting the Taylor series expansion instead of logarithm in Eq.  (2.204) facilitates calculation 
of the integral in this equation. That is  
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Ultimately, the normalized transmittance in the open aperture Z-scan experiment at the presence 
of 3PA is given by 

 

 
 

2
0
1 2 2 2

0

( 1)( )
(2 1)!(2 1) ( 1)

m m

m
m

pT z
m m x

∞

=

−
=

+ + +∑ (2.208)  

where 0 3 02 'effp L Iα=  , I0 is the peak on-axis intensity at the focus, α3 is the 3PA coefficient 

(desired to be measured), x=z/z0 , z is the sample position and z0 is the Rayleigh range. 

With a good approximation one can retain the first two terms in Eq.  (2.208) and ignore the 
higher order exponents. Following this approximation the transmittance is simply given by the 
below equation indicating that the maximum absorption, occurring at the focus, scales 
quadrically with the peak on-axis intensity as shown in Fig.  2.13. 
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 (2.209)  

where Tmin and Amax are the normalized transmittance and absorbance at the focus respectively.  
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Fig.  2.13. Z-scan normalized transmittance at the presence of 3PA for different amount of P0 

 

 

Fig.  2.14. Z-scan normalized transmittance at the presence of 2PA (red curve) and 3PA (blue curve). The 3PA 
respective signal is narrower than that of 2PA showing this fact that 3PA occurs at shorter vicinity of the focal point 
where the sample experiences higher intensity 

Fig.  2.14 shows open aperture Z-scan trace at the presence of 3PA calculated with p0=1 (blue 
curve) and at the presence of 2PA calculated with q0=0.3. It reveals that higher intensity requires 
for 3PA process to occur in comparison with 2PA process. It also manifests that a scanning range 
of about 10z0 is sufficient for Z-scan experiment at the presence of 3PA since 3PA is almost zero 
at the distance of about 5z0 away from the focal plane.  However, a scanning range larger than 
20z0 is recommended for Z-scan at the presence of 2PA to find a reliable base line in order to 
normalize the Z-scan signal.    
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2.4.     Closed aperture Z-scan at the presence of nonlinear 
absorption 

2.4.1.     Closed aperture Z-scan for third order nonlinearity at the presence of 
two-photon absorption 

Previously, the nonlinear phase shift for a Gaussian beam was derived assuming Kerr effect and 
a negligible nonlinear absorption. Now, the similar procedure can be pursued for calculating the 
phase distortion at the presence of 2PA. The phase and intensity changes within the sample are 
given as  
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The first equation yields the intensity within the medium as a function of propagation length. 
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Therefore, the entire phase shift due to self-lensing after exiting the medium of length L can be 
obtained through  

 0

0

'
0

2 '0
0 2 2

( )
( ) '

( ) ( )

z
L

z

I z e
z k n dz

I z I z e

α

α

α

α α α

−

−ΔΦ =
+ −∫  (2.213)  

where I(z) is the incident intensity on the iterance surface of the sample when it is placed at the 
position z. The phase shift is now given by  

 
[ ]2

2
( , , ) ln 1 ( , , )

k n
z r t q z r t

α
ΔΦ = +  (2.214)  

Where ( , , )q z r t  was defined in Eq.  (2.158) so that 2( , , ) ( , , ) effq z r t I z r t Lα= . 

The complex electric field exiting the sample can be written as: 

 ( , , )( , , ) ( , , ) i z r t
e eE z r t E z r t e− ΔΦ=  (2.215)  
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where ( , , )eE z r t  is the amplitude of exiting electric field that is proportional to the square root 
of the intensity on the exiting surface of the sample given by the following relation: 
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After substitution from Eq.  (2.156) into Eq.  (2.216) and then form Eq.  (2.216) and  (2.214) into 
the Eq.  (2.215), the complex electric field exiting the sample is given by 
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The term ( )
1
21 ( , , )

kiq z r t
γ

β
− −+  in Eq.  (2.218) can be expanded using the binomial series. Thus, 

the exiting electric field is obtained as  
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(2.220)

Eq.  (2.220) is basically identical with Eq.  (2.54) derived at the absence of 2PA. The main 
difference is that the term [ ]( , ) !mi z t m− ΔΦ  in Eq.  (2.54) has been replaced with the new term

[ ]( ) ( )( )2 2
0

( , ) ! 1 (2 1) 2
m

m

n
i z t m i n k nα

=

⎡ ⎤
− ΔΦ − −⎢ ⎥

⎢ ⎥⎣ ⎦
∏ . This represents the fact that the absorptive 

and refractive contributions to the Z-scan transmittance are coupled with the coupling factor of 
2 22 k nα . This means that in each position within the sample only the residual light intensity 

after the 2PA is the cause of the phase change.  

Therefore, the electric field distribution on the aperture plane can be written similar to Eq.  (2.72) 
by performing the above replacement. That is      
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Now, the normalized transmittance through a finite aperture, in terms of electric field amplitude, 
is written as 
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 In order to calculate the on-axis (r = 0) normalized transmittance for small phase change (ΔΦ < 
1) retaining only the first two terms in Eq.  (2.221) and neglecting the other terms gives a 
reasonable approximation. Hence, the normalized transmittance assuming CW radiation can be 
given as:                                                           
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After a lengthy calculation, the normalized transmittance is obtained as follows:  
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By using approximation assumed in Eq.  (2.83) and also substituting from equations  (2.84), 
 (2.85) and  (2.86) the normalized transmittance for closed aperture Z-scan at the presence of two-
photon absorption is obtained as follows: 
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 (2.225)  

The on-axis transmittance assuming a temporally Gaussian pulsed laser beam is given as 
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 (2.226)  

Fitting Eq.  (2.226) to the experimental closed aperture Z-scan data allows one to extract both the 
nonlinear refractive index and the 2PA coefficient simultaneously. 

It is seen that Eq.  (2.226) is converted into Eq.  (2.92) by letting q0=0 as it is expected. It is also 
allowed and practicable to extract 2PA coefficient by fitting Eq.  (2.226) to open aperture Z-scan 
data measured at the presence of 2PA by setting ΔΦ0=0.  

Fig.  2.15 shows a Z-scan transmittance of a 0.2 mm thick cell of Rhodamine B using 25 fs pulses 
at 798 nm. Fitting Eq.  (2.226) (derived for closed aperture Z-scan at the presence of 2PA) with 
ΔΦ0(0) = 0 as well as Eq.  (2.178) (derived for open aperture Z-scan at the presence of 2PA) to 
the measured data for Rhodamine B yielded the same q0 of 0.9. This proves that Eq. (2.226) is 
enough accurate in order to extract the absorptive properties from both closed and open aperture 
Z-scan trace. 

 

 

Fig.  2.15. Open aperture Z-scan of Rhodamine B. diamond data points show measured data, solid green curve shows 
fit curve using Eq.  (2.178) and solid red curve shows fit curve using Eq.  (2.226) with ΔΦ0(0) = 0. A q0=0.9 was 
extracted from both fitting curves. 
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Fig.  2.16 shows closed aperture Z-scan normalized transmittance at the presence of absorptive 
nonlinearities. Figure (a) shows how 2PA influences the transmittance and figure (b) indicate the 
effect of SA on the closed aperture trace that is no longer symmetric. 2PA suppresses the peak 
and enhances the valley while SA produces the opposite effect.   

 

 

Fig.  2.16. Close aperture Z-scan normalized transmittance at the presence of 2PA (a) and at the presence of SA (b). 
Red curves indicate positive refraction and blue curves indicate negative refraction in both figures (a) and (b). 

 

 

2.4.2.     Closed aperture Z-scan for fifth order nonlinearity at the presence of 
3PA 

Fifth order refraction and absorption were described separately in sections 2.2.2 and 2.3.3. In 
order to obtain the phase distortion induced by fifth order nonlinearity, in which the change in 
the refractive index and also the absorption coefficient are both proportional to intensity square, 
the following pair of differential equation must be solved. 
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The differential equation in  (2.228) has previously been solved gave the position dependent 
intensity within the sample as follows 
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The entire phase change due to self-lensing produced by an intense light beam, whose intensity 
is governed by Eq.  (2.229), after propagation through a medium of length L is written as 
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where P has already given in Eq.  (2.191) 

The complex electric field exiting the sample Ee now contains the nonlinear phase distortion: 
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After substitution I(z,r,t) and ΔΦ(z,r,t) from Eq.  (2.190) and  (2.51) into Eq.  (2.233) the exiting 
electric field is obtained as: 
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 (2.234)  
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The term ( )
4

3

1( )2 2 41 ( , , )
k n

i
p z r t α

− −
+  in Eq.  (2.235) can be expanded using a binomial series. 
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(2.237)  
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4( , ) ' ( , )effz t k n L I x tΔΨ = (2.238)  

Eq.  (2.238) would be basically identical to Eq.  (2.55) if the term ( )( , , ) !mi z r t m− ΔΦ  is replaced 

by the term ( ) ( )3 4
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( , , ) ! 1 (4 3) (2 )
m
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n
i z r t m i n k nα

=

− ΔΨ − −∏  thus, the same calculation 

procedure can be applied in order to obtain the electric field distribution on the aperture plane. 
The result in this case will be analogous to Eq.  (2.72) given by 
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wm0 in Eq.  (2.239) defined as follows which differs from what was defined in Eq.  (2.70).  
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2

0
( )

4 1m
w zw

m
=

+
 (2.240)  

All other parameters such as dm, θm, Rm and wm (defined in Eqs.  (2.67),  (2.68),  (2.70) and  (2.71)) 
are rewritten with the above definition for wm0. 

The on-axis electric field at the aperture plane can be obtained by letting r=0 in Eq.  (2.239). 
Furthermore, in the limit of small nonlinear phase change, only the first two terms in  (2.239) 
need to be retained. Following such simplification and assuming CW radiation, the on-axis 
normalized transmittance can be written as: 
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(2.243)  

After lengthy calculation and neglecting the terms having ΔΨ2, the on-axis normalized 
transmittance is obtained as: 

 2 2
0 0

2 2 2

18 ( 5)
2( ) 1

( 1) ( 25)

x p x
T z

x x

ΔΨ − +
= +

+ +
 (2.244)  

In order to extend the steady-state results to include transient effects induced by pulsed radiation 
the time-averaged 0( )t〈ΔΨ 〉 and 2

0 ( )P t〈 〉 must replace 0ΔΨ  and 2
0P  in Eq.  (2.244). Assuming a 

Gaussian profile for temporal behavior of the laser pulses, the time averaged of aforementioned 
quantities are obtained 0 0( ) (0) 3t〈ΔΨ 〉 = ΔΨ and 2 2

0 0( ) (0) 3P t P〈 〉 = . 

Therefore, the on-axis normalized transmittance using temporary Gaussian pulses in the closed 
aperture Z-scan is given by 
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(2.245)  
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where 2
0 4 0(0) ' (0)effk n L IΔΨ = , 2 2

0 3 0(0) 2 ' (0)effp L Iα=  and I0(0) is the peak on-axis intensity 
at the focus. 

Fitting Eq.  (2.245) to the measured Z-scan data allows obtaining both parameters of the 
nonlinear refractive index n4 and the 3PA coefficient α3. 

 

2.4.3.     Closed aperture Z-scan for concurrent third and fifth order 
nonlinearity at the presence of two-photon absorption 

The concurrent third and fifth order nonlinearity for a negligible nonlinear absorption was 
examined in section 2.2.3. Now, the previous results are extended to include the phase changes 
induced at the presence of 2PA. The phase distortion induced by concurrent third and fifth order 
nonlinearities changes with respect to the propagation length. It is given by 
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where I(z') is the intensity within the sample given by 
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The first term in Eq.  (2.247) has already been calculated in section 2.4.1. It is given by  
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 The second term in Eq.  (2.247) representing the contribution of the fifth order nonlinearity to 
the entire induced phase shift is now calculated as follows 
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(2.251)  

Under the assumption of thin sample and applying low intensity, so that the amount inside the 
bracket in Eq.  (2.251) tends towards zero, the first term in Eq.  (2.251) can be neglected with 
regard to the second term. In this limit the calculation will be greatly simplified. The entire 
distortion arises from the third and fifth order nonlinearity is now written as  
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At the presence of two-photon absorption, the complex electric field on the exiting surface of a 
sample of length L is given by 
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(2.256)  
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(2.257)  

The above equation indicates that the third and fifth order refractive and third order absorptive 
contributions to the Z-scan transmittance are coupled with the coupling factors of 2 22 k nα and

4 0 2 2n nα α . Since Eq.  (2.257) is basically similar to Eq.  (2.55), the electric field distribution on 
the aperture plan placed in the far field can be written analogous to Eq.  (2.72) as follows   
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The on-axis normalized transmittance now can be calculated as follows 
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(2.259)  

After a very lengthy calculation, on-axis the normalized transmittance on-axis is obtained as 
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4 4 ( 3)
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( 1) ( 9)

x L x q x
qT z

x x

α ΔΨ
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 (2.260)  

 

2.5.     Z-scan with astigmatic and elliptical beams 

2.5.1.     Closed aperture Z-scan for cubic nonlinearity using astigmatic and 
elliptical beams 

So far the calculations were restricted to circular Gaussian beams with identical beam waist 
radius in both orthogonal directions x and y in the plane normal to the propagation direction. 
Such a circular Gaussian beam has only one beam waist position. An astigmatic Gaussian beam 
has two separated waist positions with two distinct spot sizes. Therefore, in each waist position 
the beam radius is minimized only in one direction [35].  Several lasers, such as mode locked 
lasers, frequency doubled lasers, semiconductor lasers and also lasers having astigmatic cavity (a 
cavity whose mirrors possess different curvature radius in x-z and y-z planes) emit astigmatic 
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beams. Also focusing a circular Gaussian beam by a cylindrical lens results in an astigmatic 
beam [36]. Fig.  2.17 shows the beam radius in both x and y directions of a 5 mm radius circular 
beam focused by a lens with 100 mm and 100.6 mm focal length in x and y directions. This non-
spherical lens makes the focused beam astigmatic, which leads to a beam waist separation of 0.6 
mm and also a strong ellipticity of about 6 at the both focal points (w0x=5.1 μm and w0y=30.4 μm 
at the position z=100 mm away from the lens, w0x=30.4 μm and w0y=5.1 μm at a distance of 
100.6 mm away from the lens) assuming a 800 nm wavelength for the laser radiation. As can be 
seen from Fig.  2.17, the beam cross section becomes circular between the two beam waist 
positions with a beam radius of 15.8 mm. This corresponds, however, not to the smallest spot 
size.  

 

 

Fig.  2.17. Beam radius versus z position measured with respect to the lens. Blue curve shows the beam radius in x 
direction and red curve shows the beam radius in y direction. 

An elliptical beam is a beam whose radius in directions x and y are not equal. If such a beam is 
focused by a spherical lens the beam radius in both x and y directions are simultaneously 
minimized such that only one waist is observed. The beam cross section at the waist is also 
elliptical but with a 90 degree rotation with suspect to the beam cross section on the focusing 
lens; the bigger beam radius on the lens, the smallest beam waist radius is created. Fig.  2.18 
shows how the cross section of an elliptical beam changes first to a circular beam and then to an 
elliptical beam at the waist. The ellipticity of the beam at the waist position is the same as that on 
the focusing lens. 
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Fig.  2.18. Beam radius in both x and y direction of an elliptical beam with wx=4mm and wy=2 mm focused with a 
200 mm focal length spherical lens. 

As derived in previous sections, the following is a possible solution of the Helmholts equation 
for the paraxial approximation.  

 
2 2( ) exp ( )

2
A i kE r i k z x y
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 (2.261)  

If the parameter z is replaced by  0 0(( ) ) (( ) )x x y yz z iz z z iz− + − +   , Eq.  (2.261) is still a 

solution for Helmholtz equation but with entirely different characteristic. zx and zy are the beam-
waist positions in the x-z and y-z planes [46]. 
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Here wx,y(z) and Rx,y (z) are the beam radius and the wavefront curvature radius in x and y 
directions that are orthogonal to each other and also normal to the beam propagation direction z 
and φ(z) is the phase of the elliptical beam. The beam waist radiuses are denoted by w0x,0y. The 
Rayleigh ranges in x and y directions are denoted by z0x,0y and related to the beam waist radius 
through Eq.  (2.266). E0(t) contains all temporal behavior of the electric field.  The z axis and its 
increasing direction are assumed parallel with the beam propagation direction with an origin 
located on the focusing lens position [34]. 

If the thickness of the medium, through which the Gaussian beam is propagating, is small 
enough so that changes in the beam diameter within the medium due to diffraction or nonlinear 
refraction can be neglected the medium is regarded as thin sample. Under this criterion the 
dielectric field amplitude changes only due to absorption and its phase changes due to nonlinear 
refraction. In this case the amplitude and the phase of the electric field as a function of 'z
(coordinate within the sample) are governed by the following pair of equations: 

 ( ) ( )
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d k n I
dz
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= Δ  (2.267)  
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(2.268)  

In the case of cubic nonlinearity and negligible nonlinear absorption Δn(I) changes linearly with 
intensity and α(I) remains as a constant referred to as the linear absorption coefficient α0. Now, 
the differential equations  (2.267) and  (2.268) can be solved to find the nonlinear phase shift at 
the exit surface of sample. For the case of negligible nonlinear absorption the Eq.  (2.268) is 
rewritten as: 
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0 '( ') ( ) zI z I z e α−=
  

(2.270)  

where z  is the sample position. 
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By knowing the intensity within the sample now the phase change can be obtained from the 

following  
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After integration over z' for the whole length of the sample the entire phase change is obtained 

as: 
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 2( , , , ) ( , , , )effx y z t k n L I x y z tΔΦ =
 (2.273)  

where the effective length of the sample Leff is defined as follows: 
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where α0 is the linear absorption coefficient and L is the physical length of the sample. 

The spatial intensity distribution can be separated in two terms as function of radial (x and y) and 
longitudinal (z) components.                 
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The relationship between power and intensity for an elliptical Gaussian beam can be written 
analogous to that for a circular Gaussian beam.  
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(2.277)  

Therefore, the phase shift of the electric field at the exiting plane of the sample is: 
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one must note that 0 02 P( ) ( )x yt w wπ  is not the on-axis intensity at the focus hence, 0( )tΔΦ  
cannot be considered as the on-axis phase shift at the focus because there are two beam waists at 
two different z position. 

The complex electric field exiting the sample of length L containing two terms representing 
linear absorption and nonlinear refraction can be written as  
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The nonlinear phase-change of the electric field can be expanded by means of the Taylor series 
expansion given by 
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After substitution of ( , , , )i x y z te− ΔΦ  from Eq.  (2.283) into Eq.  (2.281) the electric field exiting the 
sample is obtained as: 
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Eq.  (2.284) represent a summation of infinite number of Gaussian beams where the beam radius 
of the mth beam is ( ) 2 1w z m + .  

The propagation of each individual Gaussian beam through free space between the sample and 
the aperture plane is governed by the Huygens integral where the input plane is the exit surface 
of sample and the output plane is the aperture plane at the distance of d away from the sample. 

All those Gaussian beams in summation  (2.284) are composed and superposed on the aperture 
plane to reconstruct the beam. Therefore, like in Eq.  (2.72) the complex electric field on the 
aperture plane is given by 
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The normalized transmittance is defined as 
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 (2.286)  

The on axis electric field can be obtained by setting r=0 in Eq. (2.285) therefore, the on-axis 
normalized transmittance for closed aperture Z-scan using CW astigmatic laser beams is give by 
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( , 0, )
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= ΔΦ =
 (2.287)  

In the limit of small nonlinear phase change ( 0 1ΔΦ < ) and also far field approximation (d >> z0) 
only the first two terms in the sum in Eq. (2.285) is adequate to be retained  
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In terms of new defined parameters of 
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(2.291)  
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(2.292)  

where 

 ( )( ) ( ) 21 9 3a x y x y x y= − − + +  (2.293)  

 ( )( )2 3b x y x y= + +  (2.294)  

 ( ) ( )2 29 9h x y x y= − + +  
(2.295)  

Eq.  (2.292) can be recast in the following form in order to eliminate the square root  
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0 0( , ) 1 ( ) A i BT z i z
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ΔΦ = − ΔΦ  (2.296)  
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(2.297)  

The terms possessing 2
0 ( , )z tΔΦ  was ignored in the above expression in the limit of 0 ( , )z tΔΦ

<1. 

B can be found in terms of a and b. that is 

 2 2 2a i b A i B A B i A B a i b+ = + ⇒ − + = +  (2.298)  
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 4 2 24 4 0B a B b+ − =  (2.300)  
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(2.303)  

By setting x=y it was verified that the above equation is converted to Eq.  (2.88) which was 
derived for the case of a circular Gaussian beam: 
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 (2.304)  

In Fig.  2.19 red curve shows the normalized transmittance for the closed aperture Z-scan. The 
results are calculated assuming an elliptical beam with ellipticity of 5 (wx=0.4 mm and wy=2 
mm) focused by a 200 mm focal length lens leading to an astigmatic beam having two separated 
waist position of z=181.6 mm (measured with respect to the focusing lens) with beam radius of 
w0x=121 μm and wy=186 μm and Rayleigh range of 57.8 mm and also z=199.96 mm with beam 
radius of wx=127 μm and w0y=25.4 μm and Rayleigh range of 2.55 mm. As seen from Fig.  2.19, 
the intensity at position z=199.96 mm (almost equal to focal length of the focusing lens) is high 
enough to induce self-focusing whereas on other waist position (z=181.6 mm) no beam 
broadening or narrowing occur since the beam spot size is quite large and thus the intensity is not 
high enough to induce refractive index change. A simple calculation indicates that the beam 
diameter at the position z=181.6 mm is 7 time larger than that on the position z=199.96 mm and 
thus the intensity on the position z=181.6 almost equals to 2% of that on the position z=199.96 
mm.  

 



99 

 

 

Fig.  2.19. Closed aperture Z-scan normalized transmittance. Red curve is the calculated result for closed aperture Z-
scan employing an elliptical beam with beam radius on the lens of wx=0.4 mm and wy=2 mm focused by a 200 mm 
focal length lens. Blue curve is plotted for comparison using a circular beam of 2 mm beam radius focused by the 
same lens 

The transmittance trace for a circular beam is symmetric whereas it becomes asymmetric when 
using an elliptical beam and becomes more asymmetric with increasing ellipticity of the laser 
beam [47]. 

Fig.  2.20 shows the normalized on-axis transmittance for closed aperture considering cubic 
nonlinearity using an astigmatic laser beam. A circular beam with radius of 5 mm has been 
focused using a non-spherical lens with focal length of fx=200 mm and fy=205 mm. It results in 
appearing two separated beam waists located at z=200 mm (measure with respect to the focusing 
lens) with beam radius of w0x=10.2 μm and wy=125 μm and also z=205 mm with beam radius of 
wx=125 μm and w0y=10.2 μm. The laser beam spot size at both waist positions are the same 
hence, the same refractive index change is expected to occur at both waists. As seen from Fig. 
 2.20, the same transmittance change occurs while passing both beam waist positions. The laser 
beam spot is circular at the position z=202.5 (middle of two beam waists) with a radius of 63 μm. 
The transmittance traces are not symmetric when scanning the sample though the either waist 
positions. The reason is that the beam radius does not increase identically when scanning away 
from the beam waist position in positive or negative z direction.  



100 

 

 

Fig.  2.20. Normalized transmittance for closed aperture Z-scan using an astigmatic beam resulting from focusing of 
a circular beam of radius 5 mm by a non-spherical lens with 200 mm and 205 mm focal length in orthogonal 
direction of x and y normal to the optical axis. It is calculated assuming ΔΦ0=1. 

While scanning a sample with a positive nonlinearity in the beam propagation direction through 
the beam waist, beam broadening and narrowing resulted from refractive index change leads to 
first decreasing and then increasing the transmittance (negative nonlinearity gives rise to an 
opposite configuration). This suggests that there is a zero-crossing as the sample passes the beam 
waist position. It means that the beam size on the aperture plane and thus the transmittance is the 
same as in the linear regime. This occurs due to cancelling of beam broadening by beam 
narrowing because the beam waist located in the middle of the sample. Using a circular laser 
beam in the closed aperture Z-scan experiment leads to appearing only one null whereas two or 
three nulls occur in case of employing astigmatic beam. The reason is that a circular beam has 
only one waist whereas an astigmatic beam has two waists.   

The position of nulls can be found by letting T(z)=1 in Eq.  (2.303).   
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(2.305)  

For the case of  y = - x  the null occurs at: 
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Note that for the case of a circular Gaussian beam where zx=zy and z0x=z0y the null position is 
obtained as znull= zx=zy indicating that the null occurs at the focal point as expected for a circular 
beam. The second case in Eq.  (2.305) (y=-3/x) implies that one or even two more nulls can 
happen.  
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 (2.307)  

Eq.  (2.307) gives two null positions occurring for an astigmatic beam only provided that the term 
under radical is greater than zero (or at least equal to zero that implies occurring only one null). 
Two nulls obtained from Eq.  (2.307) are equidistant from the midpoint of two beam waists. For 
instance, three nulls are seen in Fig.  2.20 that are calculated from Eq.  (2.306) as znull = 202.44 
mm and from Eq.  (2.307) as znull = 200.11 mm and znull = 204.89 mm. It can be concluded that the 
Z-scan signature for an astigmatic beam may contain an additional peak and valley as shown in 
Fig.  2.20. It can also be verified that the null positions obtain from the above equation for a 
circular beam are coincident with the focal point of the focused laser beam. 

2.5.2.     Open aperture Z-scan for cubic nonlinearity using astigmatic and 
elliptical beams 

In this section, the open aperture Z scan transmittance at the presence of 2PA is derived 
assuming an astigmatic laser beam. Here the intensity on the exit surface of the sample as a 
function of incident intensity is still governed by Eq.  (2.156) although the distribution is no 
longer circularly symmetric.   

 0( , , , )( , , , )
1 ( , , , )
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e
I x y z t eI x y z t

q x y z t

α−

=
+

 (2.308)  

The radial intensity distribution on the x-y plane for an astigmatic beam is given by 

 22

22
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( )( )
0( , , , ) ( , ) yx
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w zw zI x y z t I z t e e

−−

=  (2.309)  

In order to simplify the calculation, the coordinate system can be changed from Cartesian 
coordinate to polar coordinate. In the new coordinate 
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And 
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The laser power exiting the sample is obtained by the surface integration of intensity as follows: 
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In order to facilitate the calculation of above double integral the differential elements can be 
changed as follows 

 [ ( , , , )] 2 ( , ) ( , , , )d q z r t f z q z r t r drθ θ θ= −  (2.314)  

Therefore, the radial integral is calculated as 
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The laser power transmitted through the sample is obtained as: 
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The power in Eq.  (2.316) will be exactly the same as Eq.  (2.166) if ( ) ( )x yw z w z is replaced by 
2( )w z  hence, a calculation analogous to that performed from Eq.  (2.167) to Eq.  (2.175) can be 

done to obtain the normalized transmittance for open aperture Z-scan at the presence of 2PA 
using an astigmatic laser beam. That is 
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where 
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and 
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It should be reminded that the lens position is taken to be z=0 and zx and zy are the beam waist 
positions where the beam radius in x and y direction is minimized.  

The beam waist radius of an elliptical beam focused by a non-spherical lens is given by the 
following [48]. 
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(2.320)  

where fx,y is the focal length of the focusing lens, wx,y is the beam radius on the lens and z0x,y is 
the Rayleigh rang attributed to the pre-lens beam in x and y directions. 

The beam waist position measured with respect to the position of the focusing lens is given by 
the following 
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(2.321)  

From Eq.  (2.321) it can be seen that focusing an elliptical beam by any lens or even focusing a 
circular beam by a non-spherical lens leads to astigmatism in the focused beam. Z-scan 
transmittance of an astigmatic beam is no longer symmetric as it is for a circular beam. For 
comparison, in Fig.  2.21 the normalized Z-scan transmittance for an elliptical beam with radius 
of wx = 0.2 mm and wy = 0.6 mm (red curve) and a circular beam with radius of w = 0.6 mm (blue 
curve) are plotted assuming q0 = 1 for both cases. Both beams are focused by a 200 mm focal 
length lens. The waist position of the focused circular beam is z = 196 mm and the waist 
positions of the focused elliptical beam are z = 196 mm and z = 76 mm. 
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Fig.  2.21. Blue curve shows the Z-scan transmittance of a circular beam of radius 0.6 mm focused by a 200 mm 
focal length lens. Red curve shows the Z-scan transmittance of an elliptical beam with radiuses of wx= 0.2 mm and 
wy=0.6 mm. Both transmittance are calculated assuming q0=1. (zx=76 mm, zy=196 mm, z0x=97 mm and z0y=28) 
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Chapter 3 

3. Numerical integration 
Numerical integration is a type of numerical computing that provides a very useful means by 
which, one can evaluate a numerical approximation for the value of an integral which is difficult 
to solve it analytically and sometimes it is even impossible to be solved analytically. For 
instance, Eq.  (2.76) contains a two dimensional integral for calculating the normalized 
transmittance in a CA Z-scan measurement which is impossible to be solved unless one tends to 
calculate only the on-axis (r=0) transmittance under assumption of small induced phase shift 
(ΔΦ0<1). Another example is Eq.  (2.170) that contains an integral over infinity. only under the 
assumption of q0<1 the integrant in that integral can be expanded as a power series using Taylor 
series expansion and then, the integral can be calculated analytically. For values of q0 larger than 
one, the unique way to evaluate the value of that integral is employing numerical integration.  

3.1.     Intensity distribution on the far field 
The phase of an intense laser beam is modulated during the propagation through a nonlinear 
medium due to the change in the refractive index. By recalling Eq.  (2.52), the complex electric 
field exiting a thin sample at the absence of nonlinear absorption is given by 

 
0

1
( , , , )2( , , , ) ( , , , )

L i x y z t
eE x y z t E x y z t e e

α− − ΔΦ=  (3.1)  

where E is the electric field on the entrance plane of the medium. 

 ΔΦ is the entire induced phase change during the propagation through a nonlinear medium with 
a length of L which can be written as  

  ( , , ) ( , , )r z t k L n r z tΔΦ = Δ (3.2)  

The complex electric field distribution on the far field can be calculated using the Fresnel–
Kirchhoff diffraction theory via the following integral. 
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Then, the intensity distribution on the far field can be calculated through the following relation
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(3.5)

Far field condition allows one to apply Fraunhofer diffraction criteria under which the intensity 
distribution can be written in the polar coordinate using Bessel function as 
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(3.6)

where r is the radial coordinate on the exit plane of the medium,  ρ is the radial coordinate on the 
observational plane, J0 is the first kind zero-order Bessel function and I '(z,t) is defined as 
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(3.7)  

Where Ep is the pulse energy, τ is the pulse width, w0 is the beam waist radius, λ is the 
wavelength, d is the distance from the exit plane of the medium to the observational plane and z0 
is the Rayleigh range.  

3.1.1.     Far field intensity distribution of a Gaussian laser beam transmitted 
through a medium at the presence of third order nonlinearity 

For the case of third order nonlinearity, the change in the refractive index is proportional to the 
light intensity thus the entire induced phase change in a Gaussian beam during the propagation 
through a nonlinear medium positioned on the coordinate of z is given by 
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(3.8)  

If the induced phase change is small (ΔΦ0<1) the laser beam maintains its Gaussian profile 
during the propagation therefore, the far field intensity will be distributed spatially Gaussian on 
the observational screen. As the induced phase change increases the intensity profile on the far 
files screen will deviate from a Gaussian profile so that a number of concentric rings will appear.  

The number of rings, the thickness of rings and also the brightness of the center of rings, that 
determines whether the center is dark or bright, depends on two conditions first, the sign of 
nonlinearity and second, the sign of the radius of the wavefront curvature. When the sign of the 
nonlinear refractive index in a medium is positive it is referred to as a self-focusing media in 
which a positive phase change is induced in the propagating laser beam. In contrast to a self-
focusing media, the sign of the nonlinear refractive index in a self-defocusing media and thus the 
induced phase change in the propagating laser beam is negative. The sign of the radius of the 
wavefront curvature is defined positive for a divergent beam (a post-focal beam) and negative 
for a convergent beam (a pre-focal beam). 

In Eq.  (3.6) the phase consists of three terms. The first one is a constant, depends neither on the 
laser pulse energy nor the medium position. The second term is not constant as its magnitude 
changes while the medium is moved and its sign will be reversed as the medium passes through 
the focal plane. The third term depends on the medium position as well as the laser pulse energy. 
It is worth to be mentioned that the second and the third terms have the same sign thus it is the 
sum of these two phases that determines the diffraction pattern on the observation plane. 
Therefore, as long as the sign of the radius of wavefront curvature and the induced phase change 
are the same, the result of the sum of these two phases will be additive resulting in the same 
diffraction pattern for the following two cases [49-54].  

a) A self-focusing medium (n2>0) is exposed to a divergent beam (R>0). 

b) A self-defocusing medium (n2<0) is exposed to a convergent beam (R<0). 

If the sign of the radius of wavefront curvature and induced phase change are different the result 
of the sum of these two phases will be subtractive but the net phase will be identical for the 
following two cases resulting in the same diffraction pattern. 

a) A self-focusing medium (n2>0) is exposed to a convergent beam (R<0). 

b) A self-defocusing medium (n2<0) is exposed to a divergent beam (R>0). 

Our calculation reveals that when the divergent beam propagates through the self-focusing 
medium  or the convergent beam  propagates through the self-defocusing medium  the far-field 
intensity distribution pattern is a series of thin diffraction rings with a central bright spot [51]. 
The calculation also indicates that when the divergent beam propagates through the self-
defocusing medium or the convergent beam propagates through the self-focusing medium the 
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far-field intensity distribution pattern is a series of thick diffraction rings with a central 
brightness depending on the value of the induced phase change. If the magnitude of the induced 
phase change is an odd integer multiple of π the center of rings is dark  whereas when the 
magnitude of the induced phase change is an even integer multiple of π the center of rings is 
bright [49].    

Numerical integrations using MATLAB have been carried out in order to calculate the laser 
intensity distribution and the diffraction pattern on the far field. All calculation was performed 
under the following condition. It was assumed that a 15 mm diameter laser beam emerges from a 
femtolaser amplifier that produces 25 fs pulses with a central wavelength of 800 nm. This laser 
beam is focused using a 300 mm focal length convergent lens. Considering a beam quality factor 
of 2 the laser beam radius on the focal plane will be 20.4 Micron implying a Rayleigh length of 
0.815 mm. The nonlinear medium was assumed 1 mm thick with a nonlinear refractive index n2 
of 5*10-15 (cm2/W). It is positioned at the coordinate of z=±0.54 mm implying a radius of 
wavefront curvature of ±1.77 mm. Negative positions implies a negative radius of wavefront 
curvature which is the signature of a convergent beam whereas positive positions implies a 
positive radius of wavefront curvature which is the signature of a divergent beam. The 
observation plane was located at a distance of 20 cm from the focal plane fulfilling the far field 
criterion (d>>z0).   

The induced phase change can be controlled changing the laser pulse energy. The maximum 
(t=0) on-axis (r=0) induced phase change can be obtained through the following equation  
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(3.9)  

Calculation shows that 20 nJ pulses are capable to induce a phase change of 1π at the middle of 
pulse (t=0) and on the center of the beam cross section (r=0). Since the induced phase change is 
proportional to the laser pulse energy thus, a 2π phase change corresponds to 40 nJ pulses and so 
on. 

Fig.  3.1 indicates the intensity distribution and the diffraction pattern on the observation plane 
when the nonlinear medium was located at the position of z=+0.54 mm. Figures (a) and (b) 
shows the intensity distribution and diffraction pattern for 20 nJ laser pulses. Figures (c) and (d) 
corresponds to 40 nJ pulses, (e) and (f) corresponds to 60 nJ pulses and (g) and (h) corresponds 
to 80 nJ pulses. 
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(a)  ΔΦ0(z=+0.54 mm, Ep=20 nJ)=1π 
 

(b) 

 

(c)  ΔΦ0(z=+0.54 mm, Ep=40 nJ)=2π 

 

 

(d) 
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(e)  ΔΦ0(z=+0.54 mm, Ep=60 nJ)=3π 

 

(f) 

 

(g)  ΔΦ0(z=+0.54 mm, Ep=80 nJ)=4π 

 

 

(h) 

Fig.  3.1 Far field intensity distribution and diffraction pattern of a divergent beam transmitted through a self-

focusing medium for different laser pulse energies corresponding to different induced phase change.  

Fig.  3.1 shows that when a divergent Gaussian beam passes through a self-focusing medium the 
diffraction pattern has a central bright spot surrounded by less brighter concentric rings for any 
value of induced phase change. 

Fig.  3.2 indicates the intensity distribution and the diffraction pattern on the observation plane 
when the nonlinear medium was located at the position of z=-0.54 mm. Figures (a) and (b) shows 
the intensity distribution and diffraction pattern for 20 nJ laser pulses. Figures (c) and (d) 



111 

 

corresponds to 40 nJ pulses, (e) and (f) corresponds to 60 nJ pulses and (g) and (h) corresponds 
to 80 nJ pulses. 

 

 

(a)  ΔΦ0(z=-0.54 mm, Ep=20 nJ)=1π 

 

(b)   

 

(c)  ΔΦ0(z=-0.54 mm, Ep=40 nJ)=2π 

 

(d)   
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(e)  ΔΦ0(z=-0.54 mm, Ep=60 nJ)=3π 

 

(f)   

 

(g)  ΔΦ0(z=-0.54 mm, Ep=80 nJ)=4π 

 

(h)   

Fig.  3.2 Far field intensity distribution and diffraction pattern of a convergent beam transmitted through a self-

focusing medium for different laser pulse energies corresponding to different induced phase change.  

Fig.  3.2 shows that when a convergent Gaussian beam passes through a self-focusing media the 
diffraction pattern consists of concentric rings such that the outer rings are thicker and brighter. 
The center of diffraction rings is dark or a less bright spot depending on the magnitude of the 
induced phase change.   
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3.1.2.     Far field intensity distribution of a Gaussian laser beam transmitted 
through a medium at the presence of fifth order nonlinearity 

Numerical computings have also performed to obtain the laser intensity distribution and 
diffraction pattern on the far field when a Gaussian convergent or divergent beam passes through 
a nonlinear medium in which the 5th order nonlinearity is the origin of refractive index change.  

One should notes that at the presence of 5th order nonlinearity the change in the refractive index 
is proportional to intensity square thus the induced phase change is given as 
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(3.10)  

Therefore, when the nonlinear medium is located on the position coordinate of z the maximum 
on-axis induced phase change in terms of pulse energy can be written as 

 2
4

2 4 2 2
20

2
0

32ln 2( 0, , 0)
(1 )

pELnr z t
w z

z
π λτ

ΔΦ = = =
+

 
(3.11)  

A nonlinear refractive index n4 of 5*10-26 (cm4/W2) was assumed. The sample was located on the 
position coordinates of z=±1.03 mm. The radius of wavefront curvature on the z position of 1.03 
mm was calculated to be 1.66 mm. All other parameters were assumed to be the same as those in 
previous calculation mentioned earlier. Under these conditions, the induced phase change 
obtained through Eq.  (3.11) will be 1π for 40 nJ laser pulses, 2π for 40√2 nJ laser pulses, 3π for 
40√3 nJ laser pulses and 4π for 80 nJ laser pulses. 

Fig.  3.3 shows the far field diffraction pattern of a divergent Gaussian beam when passes through 
a self-focusing medium for different laser pulse energies. Figures (a), (b), (c) and (d) indicates 
the diffraction patterns when the laser pulse energies were adjusted to 40, 40√2, 40√3 and 80 nJ 
respectively. All diffraction patterns have a central bright spot surrounded by a number of thin 
and less bright rings. The number of rings increases with increasing the induced phase change. 
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(a)  ΔΦ0(z=+1.03 mm, Ep=40 nJ)=1π  
 

(b)  ΔΦ0(z=+1.03 mm, Ep=40√2 
nJ)=2π 

 

(c)  ΔΦ0(z=+1.03 mm, Ep=40√3 
nJ)=3π 

 

(d)  ΔΦ0(z=+1.03 mm, Ep=80 nJ)=4π 

Fig.  3.3 Far field diffraction pattern of a divergent Gaussian beam transmitted through a self-focusing medium at the 
presence of 5th order nonlinearity for different pulse energies. 

Fig.  3.4 shows the far field diffraction pattern of a convergent Gaussian beam when passes 
through a self-focusing medium for different laser pulse energies. Figures (a), (b), (c) and (d) 
indicates the diffraction patterns when the laser pulse energies were adjusted to 40, 40√2, 40√3 
and 80 nJ respectively. As seen in Fig.  3.4 all diffraction patterns consist of a number of 
concentric rings. As the induced phase change increases the number of rings increases such that 
the outer rings are thicker. 
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(a)  ΔΦ0(z=-1.03 mm, Ep=40 nJ)=1π 

 

(b)  ΔΦ0(z=-1.03 mm, Ep=40√2 
nJ)=2π 

 

(a)  ΔΦ0(z=-1.03 mm, Ep=40√3 
nJ)=3π 

 

(a)  ΔΦ0(z=-1.03 mm, Ep=80 nJ)=4π 

Fig.  3.4 far field diffraction pattern of a convergent Gaussian beam transmitted through a self-focusing medium at 

the presence of 5th order nonlinearity for different pulse energies  

3.2.     Normalized transmittance in CA Z-scan set up 
Normalized transmittance is defined as the quotient of the transmitted energy through the 
aperture at the presence of nonlinear self-lensing to the transmitted energy through the aperture 
at the linear regime, when the medium is far enough away from the focal plane so that the 
intensity is not high enough to induce phase change.  
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where 

  
0

P( ) ( , 2
a

I dρ π ρ ρΔΦ = ΔΦ)∫ (3.13)  

where a is the aperture radius and ρ is the radial coordinate on the aperture plane and I(ρ) was 
given in Eq.  (3.6). 

3.2.1.     Normalized transmittance at the presence of 3rd order nonlinearity    

The normalized transmittance has been calculated for different aperture sizes keeping the pulse 
energy constant and also for different laser pulse energies keeping the aperture size constant. 

The results of calculation show that the normalized transmittance highly dependents on the size 
of the aperture. As the size of the aperture increases the difference between the maximum 
transmittance and minimum transmittance will decrease. It is clear that for a large enough 
aperture size (comparable with the beam spot size on the aperture plane) the transmitted energy 
through the medium entirely passes through the aperture therefore, the transmittance will no 
longer be sensitive beam focusing or defocusing so that there will be no difference between 
transmittance in the linear and nonlinear regime. Thus, the transmittance will no longer be a 
function of medium position but it will remain constant as a straight line. 

Fig.  3.5 shows CA normalized transmittance and transmittance peak to valley difference for 
different aperture size when ΔΦ0=0.9 and Z0=0.815 mm. The laser beam radius on the aperture 
plane was considered to be 5 mm thus, the transmittance of a 5mm radius aperture is 86.5%. 
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(a) (b) 

Fig.  3.5.  Normalized transmittance for different size of the aperture while the laser pulse energy was kept constant  

As seen in Fig.  3.5 for aperture transmittance of less than 2% the normalized transmittance has not a sharp 

dependence on the aperture size. Therefore, Eq.  (2.88) derived for on-axis transmittance can be used for aperture 

transmittance of up to 2% with a considerable accuracy.   

Fig.  3.6 shows CA normalized aperture measured with an aperture transmittance of 2% for 
different pulse energies that lead to different induced phase changes. As the pulse energy 
increases the effect of self-focusing grows stronger and thus leading to transmittance saturation 
for pre-focus positions.  

 

 

Fig.  3.6. Normalized transmittance with an aperture transmittance of 2% for different pulse energy  
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3.2.2.     Normalized transmittance at the presence of 5rd order nonlinearity    

The normalized transmittance for CA Z-scan has also been calculated assuming 5th order 
nonlinearity as the predominant process responsible for the self-lensing effect. The calculation 
revealed the same results as obtained in the case of 3rd order nonlinearity in previous section. 

Fig.  3.7 shows normalized transmittance for different aperture size (keeping the pulse energy 
constant) and for different pulse energy (same aperture size). In Fig.  3.7 (a) the induced phase 
change was considered to be 1 and in Fig.  3.7 (b) the aperture transmittance was decided to be 
2%. In both calculation the beam waist radius and Rayleigh range was assumed to be 20.4 μm 
and 0.815 mm respectively.   

 

Fig.  3.7. Normalized transmittance for different aperture size (ΔΦ0=1) (a) and for different pulse energy (AT=2%) 
(b) 

 

3.3.     Normalized transmittance in OA Z-scan set up 
In the OA Z-scan experiment the entire transmitted energy through the nonlinear medium is 
collected then it is not sensitive to beam narrowing or broadening due to self-lensing effect. Eq. 
 (3.13) and then Eq.  (3.12) can be used to calculate the OA normalized transmittance considering 
this point that the aperture size in Eq.  (3.13) should be theoretically chosen infinite. However, 
the results will be satisfactory when the aperture radius is decided to be √5 times of the beam 
radius on the aperture plane as long as the intensity profile remains Gaussian.  

3.3.1     Normalized transmittance at the presence of 2PA 

It is first reminded that Eq.  (2.178) was derived as an approximation solution with criterion of 
q0<1. Using numerical integration allows us to predict the Z-scan curves for higher absorption 
and even make possible to find a correction coefficient for Eq.  (2.178) for q0s higher than 1. 
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Fig.  3.8. OA Z-scans for different pulse energy (a), calculated Z-scan data along with the fit curves (b) and extracted 
q0 from fit curves using Eq.  (2.178) versus pulse energy (c) 

In Fig.  3.8, part (a) shows the normalized transmittance in an OA Z-scan experiment at the 
presence of 2PA. It indicates that the transmittance decreases with increasing the pulse energy. 
Part (b) of Fig.  3.8 represents Z-scan data calculated via numerical integration along with the fit 
curves using Eq.  (2.178). This figure indicates that Eq.  (2.178) suitably fits with the calculated 
data while q0 is less than one. However, the fit curve deviates from the calculated data as q0 

grows to values higher than one. Part (c) of Fig.  3.8 signifies that Eq.  (2.178) only can be used to 
extract q0s less than one since for q0s larger than one, the difference between the extracted values 
from fit curves and the expected values grows as the pulse energy increases. It is also 
comprehended from part (c) that q0 approaches saturation with a value of 1.5 which is the 
maximum extracted q0 when the transmittance is zero.     

 

(a) 

(b) 
(c) 
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3.3.2     Normalized transmittance at the presence of 3PA 

Eq.  (2.208) was derived for OA Z-scan at the presence of 3PA with criterion of p0<1. By 
performing numerical integration it is feasible to calculate the normalized transmittance for any 
value of p0. Fig.  3.9 (a) shows Z-scans of a 1mm thick 5th nonlinear medium using different 
pulse energies with pulse duration of 25 fs. The 15 mm diameter laser beam was focused using a 
300 mm focal length convergent lens leading to a 20.4 μm beam waist radius and a Rayleigh 
length of 0.815 mm. 

 

(a) 

(b) (c) 

Fig.  3.9. OA Z-scans for different pulse energy (a), calculated Z-scan data along with the fit curves (b) and extracted 
p0 from fit curves using Eq.  (2.208) versus pulse energy (c) 

In Fig.  3.9 (b) fit curves to the calculated data using Eq.  (2.208) are shows for different pulse 
energy and correspondingly for different p0. It is clearly seen that for p0s less than one the fit 
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curves are suitably fitted to the calculated data whereas for p0s larger than one a nice fitness 
cannot occur. Fig.  3.9 (c) demonstrates p0 versus E for both expected values (square blue points) 
and extracted values (circle red points) from fit curves using Eq.  (2.208). 

It is reminded from section 4.2.2 that the analytically calculated slop of log (1-T) versus log (E) 
in the case of 3PA is two times larger than that in the case of 2PA. Fig.  3.10 exhibits the 
numerically calculated results for log (1-T) in both cases of 2PA (square blue points) and 3PA 
(circle red points) confirming the same conclusion as obtained from analytical calculations. 

 

 

Fig.  3.10. Log (1-T) versus log (E) shows a slope of 0.85 in the case of 2PA (square blue points) and a slope of 1.72 
in the case of 3PA (circle red points) 

3.3.3    Normalized transmittance for different order of nonlinearity 

Using integral calculations allows one to calculate the transmittance for any order of nonlinear 
absorption.  As a demonstrating example OA Z-scan normalized transmittance for 2PA, 3PA, 
4PA and 5PA have been calculated assuming the same setup and laser parameters. The 
absorption cross sections were chosen so that the transmittance in all cases is the same allowing 
us to compare the width of the Z-scan signals for different order or nonlinearity. From Fig.  3.11 
it is clearly seen that the width of the signals decreases with increasing the order of nonlinearity. 
This is due to the higher dependence on pulse energy in higher order nonlinearity.  
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Fig.  3.11. Calculated normalized transmittance for different order of nonlinear absorption  
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Chapter 4 

4. Experimental set up and preparation  

4.1.     Femtosecond laser system 
The ultrashort laser system used for the nonlinear absorption measurements is a Ti: sapphire 
femtosecond multipass amplifier system (FEMTOPOWER TM COMPACTTM PRO Femtolasers 
Productions GmbH Austria). This system delivers ultra short laser pulses with a maximum 
average power of approximately 1W at a repetition rate of 1 kHz. The pulse duration, estimated 
as the FWHM of a Gaussian temporal profile, is typically 25 fs and the spectrum is centered at 
798 nm. The femtolaser system consists of three parts; Oscillator, Amplifier and Compressor as 
shown in Fig.  4.1. 

 

 

 

Fig.  4.1. A schematic showing different parts of a femtolaser system 
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4.1.1.     Pump lasers 

The pump laser for amplifier is an intra-cavity frequency doubled and Q-switched Nd: YLF 
(Model DM 10-527) laser. It produces 220 ns pulses having an energy of 10 mJ at a repetition 
rate of 1 kHz. Nd: YLF emits at 1054 nm wavelength but the output wavelength after the 
frequency doubling crystal is 527 nm. This laser fulfils the requirements as a pump laser for 
amplifier since pulses with energies > 8mJ and duration between 100 ns and 500 ns are required. 
The beam must be horizontally polarized.  

 The pump laser for oscillator is a compact solid-state diode-pumped, intra-cavity frequency 
doubled Neodymium-doped yttrium orthovanadate (Nd:YVO4) laser (Coherent, Inc. Santa Clara, 
CA ) that provides single frequency green (532 nm) output at power level greater than 5W. It is 
pumped by a Diode laser at a wavelength of 808 nm. 

4.1.2.     Oscillator 

A mirror dispersion-controlled Ti:sapphire oscillator (FemtoSource Pro; FemtoLasers GmbH) 
delivers 12 fs pulses of  few nJ energy at a repetition rate of 76MHz with an output power of 
more than 600 mW. The spectrum is centered at 788 nm with a bandwidth of about 122 nm. It is 
a Kerr-lens mode locked laser with TEM00 mode. Fig. 4.2 shows the beam trace in the oscillator. 

 

 
Fig.  4.2. A schematic showing oscillator beam trace 

4.1.3.     Amplifier 

The broadband (Δλ~122 nm, 76 MMz)) pulse train from the Ti:sapphire oscillator  is seeded to a 
9-pass amplifier arrangement. It consists of two curved mirrors, two retro reflectors and a 2.5-
mm thick Brewster-cut Ti: sapphire crystal. The highly doped Ti: sapphire crystal is placed in a 
vacuum chamber and is thermo electrically cooled down to (- 15 °c) to reduce the effect of 
thermal lensing. One of the retroreflectors is made up of two chirped mirrors specially designed 
for providing third- and fourth-order dispersion control to compensate for the higher-order-
dispersion of the prism compressor and all the material in the amplifier. 
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Pulse stretching before amplification is accomplished by a comparatively small amount of 
dispersion introduced by a 10-cm-long block of heavy flint-glass (SF57) and other system 
components (e.g. Faraday isolators, Pockels cell and polarizers) to a duration of ps. 

The pulse propagates nine times along slightly different paths through the gain region of 
amplifier medium. After first four passes through the crystal, a single pulse is selected out of the 
pulse train with a Pockels cell. The selected single pulse is reinjected and amplified in another 
five passes.  

The amplifier delivers 25 fs pulses with an energy of 1mJ at the repetition rate of 1 kHz. The 
spectrum is centered at 798 nm with a bandwidth of about 44 nm measured as FWHM. The 
output beam diameter is 15 mm  

4.1.4.     Compressor 

The laser pulses were stretched from femtosecond regime to picosecond regime before amplifier 
to prevent damaging the optical components inside amplifier. A linear pulse compression 
technique is used to obtain the ultrashort amplified pulses. Two pairs of prism were used for 
dispersion compensation.  The angle of prism pair as well as the distance between the first and 
second prism pair is responsible for introducing positive or negative dispersion. In Fig.  4.3 
CPR1A and CPR1B are the first prism pair. The second prism pair comprising CPR2A and 
CPR2B is mounted on a micro-stage which enables us to change the distance between prism 
pairs. By moving the second prism pair more in, more positive dispersion is introduced and vice 
versa.  

 

 

Fig.  4.3. A sketch of femtolaser system showing three different parts as well as the trace of pump beam, seed beam 
and amplifier beam 
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4.2.     Laser radiation characterization 
In order to extract an accurate multi-photon absorption coefficient or cross section from a Z-scan 
trace many parameters concerning the laser radiation must first be precisely determined. Some 
characteristic parameter such as radiation wavelength, repetition rate, pulse energy and laser 
beam diameter can be determined easily using a spectrometer and power meter. However, 
determining some other parameters such as pulse duration, laser beam quality factor, laser beam 
waist radius and Raleigh range are not straightforward and require using more complex 
equipment such as an autocorrelator and a beam viewer camera.  

4.2.1.     Pulse phase controlling employing a DAZZLER system 

The DAZZLER system is an acousto-optic programmable dispersive filter. It enables to control 
separately both spectral amplitude and spectral phase. The DAZZLER system composed of an 
acousto-optic crystal and a radio frequency (RF) generator that is controlled by a computer 
program. By using a DAZZLER system one can shape the spectral amplitude properly to avoid 
gain narrowing. It can also be used to flatten the phase over the whole spectral to make the pulse 
free of chirp and also to split a single pulse into two pulses with a separation of a few tens of 
femtosecond. This system was used to stretch the pulse duration up to few hundreds of fs via 
increasing the group delay dispersion (GDD) of the pulses propagating through the crystal that is 
drived by an appropriate RF signal.  

The pulse duration increases by introducing chirp to the laser pulse according to the following 
equation. 

 2

0 2
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GDD1 4ln 2τ τ
τ
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= + ⎜ ⎟

⎝ ⎠
 (4.1)  

where τ is the pulse duration of a chirped pulse, τ0 is the pulse duration of a Fourier-transform-
limited pulse and GDD is the magnitude of group delay dispersion. For instance, introducing a 
GDD of 870 fs2 to a chirped-free pulse will lead to increasing the pulse duration from 25 fs to 
100 fs.  

 

4.2.2.     Exact determination of Pulse duration  

A FEMTOMETER autocorrelator (model:ENV40CSG from Femtolasers company) which is 
specially designed for high-fidelity characterization of ultrashort pulses in the <10 fs – 100 fs 
range was used to measure the pulse duration. This autocorrelator can be used in two modes; 
background free (non-collinear) autocorrelation or interferometric (collinear) autocorrelation. 

In Fig.  4.4, (a) shows a schematic of intensity autocorrelor and (b) exhibits intensity 
autocorrelation of four temporally Gaussian pulses possessing a GDD of 0, 340, 660 and 870 fs2 
corresponding to pulse duration of 25, 46, 77 and 100 fs respectively. 
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Fig.  4.4. Intensity autocorrelor (a) and Intensity autocorrelation measurements (b). Pulse durations have been 
measured as the full width at half maximum (FWHM). 

4.2.3.     Laser beam diameter measurement 

A beam profiler was used to specify the laser beam spatial intensity distribution as well as to 
measure the beam diameter. An orthogonal scanning method was also carried out to measure the 
beam diameter. In this method a 1 mm aperture scanned orthogonal to the beam propagation 
direction and the transmittance was measured as a function the aperture position.  

Figure Fig.  4.5 (a) shows a pseudo colored spatial intensity profile taken by a laser beam profiler 
[LaserCam –HR (Coherent)]. Intensity distribution in both x and y directions indicates a spatially 
Gaussian beam of 15 mm diameter measured as full width at 1/e2 of maximum.  The colors 
represent the variation in the intensity from the central maxima to the edges of the profile with 
minimum intensity. Fig.  4.5 (b) shows the orthogonal scanning results and the Gaussian fit curve 
to the data from which the beam diameter was measured to be 15 mm; the same value as 
measured by the beam profiler. 

 

 

Fig.  4.5. 2D intensity profile taken by a beam profiler (a) and orthogonal scanning data with a Gaussian fit (b) 
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4.2.4.     Raleigh range measurement 

The Rayleigh range is defined as the distance from the waist of a laser beam where the beam 
radius increases by a factor of √2. A beam profiler was mounted on the translation stage in the Z-
scan apparatus in order to measure the Rayleigh range of the laser beam focused by a 300 mm 
focal length lens. The beam profiler was moved along the beam propagation direction in small 
steps of 0.1 mm so that in each position the radius of the focused laser beam was recorded. The 
ISO 11146 standard demands that about half of the measurement points must be more than two 
effective Rayleigh lengths away from the beam focus whereas the other half of the points are 
close to the focus, i.e., within one Rayleigh range [55]. Fig.  4.6 shows the measured beam radius 
and the fit curve to the measured data using Eq.  (4.2). A Rayleigh range of 0.86 mm was 
extracted from the fitting process. As will be shown later, this value for the Rayleigh range 
resulted in the best fits of the Z-scan data using Eq.  (2.178) for 2PA measurements and Eq. 
 (2.208) for 3PA measurements. This can be taken as a strong argument for the reliability of the 
Rayleigh range measurement. 

 2
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where w0 is the beam waist radius and zR is the Rayleigh range. 

 

  

Fig.  4.6. Measured beam radius around the waist. Red solid curve is the fit curve to the data using Eq.  (4.2).  

4.2.5.     Laser beam waist radius measurement 

A beam profiler was used to measure the beam radius around the waist of the focused laser but it 
should be noted that the beam is focused too tightly so that the beam waist is too small. That 
makes a precise beam radius measurement very difficult. The measured beam waist radius, 
typically a few tens of µm as shown in Fig.  4.6, is not precise enough because of the limited 
resolution of about 6 µm due to the pixel size of the beam profiler. Hence, the beam profiler 
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cannot be used for precise measurements since the beam waisr radius corresponds only to a few 
pixels. 

In order to obtain the beam waist radius precisely, a pinhole scanning method was used. A 50 
μm radius pinhole was mounted on the translation stage in the Z-scan apparatus. The pinhole 
was moved 10 mm along the beam propagation direction through the waist of the laser beam 
focused by a 300 mm focal length lens in very small steps of 0.2 mm. The energy transmitted 
through the pinhole was collected by a 60 mm focal length lens and detected on a diode. The 
obtained z-dependent transmittance was fitted using Eq.  (4.3) as shown in Fig.  4.6. From the 
fitting process the precise beam waist radius of 22 μm was obtained.   
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where a is the radius of the pinhole, w0 is the beam waist radius and w(z) is the beam radius at 
the position z that is given by Eq.  (4.2). 

 

 

Fig.  4.7. Measured transmittance of a 50 μm pinhole along the propagation direction of a laser beam focused by a 
300 mm focal length lens. Red solid curve is the fit curve using Eq.  (4.3) 

4.2.6.     Laser beam quality factor measurement 

A diffraction-limited beam known as Gaussian beam has a beam quality factor M 2 of 1. The 
beam waist radius of a Gaussian beam is calculated from 0 /Rw zλ π= ⋅  where λ is the 
wavelength and zR is the Rayleigh range. For our setup (λ=798 nm and zR=0.86 mm) the beam 
waist radius for a Gaussian beam was calculated 14.8 μm. The quality factor of a laser beam is 
defined as 2 2 2

0 0/M W w=   [56] where W0 is the measured beam waist radius and w0 is the 
calculated beam waist radius of the  specified Gaussian laser beam. A quality factor of M 2=2.2 
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was obtained for the laser beam used in our experiments as W0 was measured 22 μm and w0 was 
calculated 14.8 μm. The request for determining the beam quality factor M 2 is that the 
wavelength λ must be replaced by M 2λ in all equations. For instance 0w f wλ π= gives the 
beam waist radius of a diffraction-limited laser beam focused by a convex lens where f is the 
focal length of the focusing lens, λ is the wavelength of the laser radiation and w is the laser 
beam radius on the focusing lens. Replacing λ by M 2λ in the above equation allows calculating 
the waist radius of an M 2 times diffraction-limited. By considering M 2 =2.2, λ=798 nm, f=300 
mm and w=7.5 mm the beam waist radius is obtained 22.3 μm which is in good agreement with 
the obtained value (22 μm).  

4.2.7.     Bandwidth measurement 

The central wavelength and spectral width of both oscillator and amplifier radiation were 
measured using a fiber optic spectrometer (S2000 from Ocean Optic Inc.). The spectrum of the 
oscillator radiation is centered at 788 nm with 122 nm bandwidth and the spectrum of the 
amplifier is centered at 798 nm with 44 nm bandwidth. In Fig 3.3 the spectrum of oscillator and 
amplifier radiations are compared.  

 

 

Fig.  4.8. Spectrum of oscillator radiation (red) and amplifier radiation (blue) 

4.2.8.     Counter 

An NI USB-6211 Data acquisition device controlled by a Lab View program was used as a 
shutter to block the laser beam and also as a counter to allow a certain number of pulses to pass. 
It helps to prevent sample irradiatingt while it is translated from one position to the next position 
and thus causes less damage to the examind sample. 

4.3.     Sample preparation  
Three different kinds of samples were examined in order to verify and test the theoretically 
obtained formula for determining 2PA and 3PA coefficients applying Z-scan technique. They 
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include solids and liquids, 2P absorbers and 3P absorbers and also synthesized and commercially 
available substances.  

4.3.1.     Photo-initiators 

A photoinitiator (PI) is any chemical compound that decomposes into radicals (often referred to 
as free radicals) when exposed to light. By this definition, a two-photon initiator is a chemical 
compound that is capable to generate radicals via dissociation by simultaneous absorbing of two 
photons at a wavelength situated within the transparent region for the photoinitiator. Radicals are 
atoms, molecules, or ions with unpaired electrons on an open shell configuration. The unpaired 
electrons cause radicals to be very unstable and react quickly with other compounds, trying to 
capture the needed electron to gain stability. Generally, radicals attack the nearest stable 
molecule, stealing its electron. When the attacked molecule loses its electron, it becomes a 
radical itself, beginning a chain reaction. Hence, radicals play an important role in 
polymerization notably in the production of polyethylene plastic. In two-photon induced 
polymerization (2PIP) the chain process of polymerization is triggered by linking a radical, 
derived from a 2PI, to an unsaturated monomer molecule such as an acrylate leading to produce 
a new radical that links immediately to another molecule. In this way a chain process continues 
to generate a long molecule consisting of many numbers (thousands) of monomer that conducts 
phase transfer from monomer to polymer. Fig.  4.9 and Fig.  4.10 show typical radical generation 
via 1PA and 2PA respectively. 

 

 

Fig.  4.9. A typical radical generation process via 1PA 

Commercially available one-photon initiators (Fig. 4.9) were used at the early stage of 2PIP 
research. These initiators exhibit high quantum yield of reactive radicals after excitation. 
However, due to their rather low 2PA cross section (σ2PA) long exposure time and high excitation 
intensities are required in order to generate radicals via 2PA processes that generally cause the 
damage to the structures and thus greatly limit their widespread use. Therefore, intensive studies 
have focused on improving the 2PA sensitivity. In the last decades plenty of chromophores with 
large σ2PA were synthesized. The structure of those compounds generally contains electron donor 
groups (D) and electron acceptor groups (A) bridged by a π-conjugated system (e.g. double 
bonds or triple bonds), such as D-π-D or D-π-A-π-D [44, 57-60].  However, most of the reported 
chromophores exhibit high fluorescence yields as desirable for fluorescence imaging 
applications. To be effective as a 2PI, low fluorescence quantum yields are preferred as this leads 
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to a higher population of the triplet state, which is usually the active state of the initiators 
producing radicals or ions for inducing the polymerization.  

 

 

Fig.  4.10. Excitation and radical generation process for a typical 2PI 

It has been found that structural elements which can increase the effective conjugation length 
and polarizability of the molecule would enhance the molecular 2PA cross-section [44]. In order 
to obtain efficient 2PIs, the strategy of molecules design demands: 1) chromophoric systems 
which exhibit large σ2PA; 2) functionalities that can produce active initiating species in high 
quantum yield such as those in one-photon radical initiators; 3) mechanisms through which the 
excitation of chromophoric systems result in the activation of the functionalities. It is not easy 
and rational to compare the efficiency of two-photon absorbing molecules since the peak of 2PA 
occurs at different position for different molecules.  If one wishes to find out the absolute 
relationship between molecular structure and two-photon absorption cross-section of the studied 
molecules, the entire two-photon absorption spectra should be determined. However, at this stage 
we are not capable to carry out these measurements due to the lack of a high-power laser system 
providing a broad tunable range. 

Additionally, good biocompatibility, low toxicity, high solubility and photostabitity are required 
for biological applications and practical purposes.  

Based on the above strategy to design high efficient 2PIs, a series of newly synthesized 
compounds were measured. 1,5-Bis(4-(N,N-dibutylamino)phenyl) penta-1,4-diyn-3-one (B3K) 
which contains triple bonds and cross-conjugated D-π-A-π-D structure. Bis(4-
((4(dibutylamino)phenyl)ethynyl)phenyl)methanone (B3BP) which exhibits a longer conjugation 
length and thus a higher σ2PA can be expected. 2,7-Bis((4-(dibutylamino)phenyl)ethynyl)-9H-
fluoren-9-one (B3FL), 3,6-Bis((4-(dibutylamino)phenyl)ethynyl)-9H-fluoren-9-one (3,6-B3FL) 
and 2,6-Bis((4-(dibutylamino)phenyl)ethynyl)anthracene-9,10-dione (B3AN) that ensure good 
coplanarity resulting to facilitate the intermolecular charge transfer process which is critical in 
enhancing σ2PA. B3FL also exhibits high thermal and photochemical stability. 2,7-Bis((4-
(butyl(2-ethylhexyl)amino)phenyl)ethynyl)-9Hfluoren-9-one (BB3FL) and 2,6-Bis((4-
(butyl(2ethylhexyl)amino)phenyl)ethynyl)anthracene-9,10-dione (BB3AN) that exhibit high 
solubility in the monomers that is an important issue for the efficiency of 2PIs [61, 62]. The 
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detailed information for synthesis method and chemical properties of these compounds can be 
found in [63].  

All evaluated 2PIs do not exhibit any linear absorption beyond 600 nm, which could thus 
interfere at the wavelength used in the Z-scan experiments and the two-photon polymerization 
microfabrication (800 nm). Determining the MPA cross section of these PIs requires some 
particular considerations without them an accurate measurement cannot be expected.  

a) Each PI is dissolved in a solvent. The amount of the absorbed energy by the medium depends 
on the number of the absorbing particles within the exposed volume of the medium. Thus, in 
order to determine an accurate 2PA cross section, the concentration of these compounds must be 
measured very precisely.  

b) To make a logic comparison between the 2PA cross section of PIs, all compounds must be 
dissolved in the same solvent since, a different polarity of the solvent causes a change in activity 
of the molecules. Furthermore, all compounds must show a sufficient solubility in the used 
solvent.  

c) After absorbing energy by the molecules any structural change such as dissociation might 
happen to a number of molecules that causes a reduction in the number of 2P absorbers which 
leads to obtain a nonrealistic 2PA cross section. In order to avoid such a problem the exposed 
volume of the compound must be continuously refreshed.    

d) After excitation, each molecule might undergo radiative relaxation emitting fluorescence. 
These radiations must be somehow eliminated from the original beam transmitted through the 
medium.  

e) One should notice that only the 2PA cross section of the PIs can be determined by applying 
the Z-scan technique but not initiating activity. A high 2PA absorber compound may not be a 
high active initiator and might show a high fluorescence yield instead. 2P polymerization using 
different PIs can reveals the initiating activity of each PI.    

f) In order to determine the nonlinear absorption cross section of each compound one should first 
determine the order of nonlinearity. Using different formula calculated in chapter 2 helps one to 
determine whether 2PA or 3PA occurs in the compound under investigation.  

g) In order to extract the 2PA cross section of a compound from the Z-scan data the on-axis 
intensity at the focus within the sample must be measured. The laser power is usually measured 
before the sample thus, the reflection from the wall of the cell containing the chemical 
compound must be taken into account.  

h) The solvent itself might contribute to the effective nonlinear absorption. Thus, in order to 
extract the pure MPA cross section of the PIs, the contribution of the solvent must be somehow 
subtracted.  

 

 



 

Fig.  4.11
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substrates possess overall advantages as compared to many crystals or polymers. In particular, 
the composition of the glass can be well designed and tuned according to the needs of the 
encompassed photonic components and also their fabrication is usually feasible and inexpensive 
[65]. Silicate glasses (i.e., glasses based on silica SiO2) are both chemically and thermally 
stable, and it is rather simple to fabricate waveguides compatible with currently used optical 
fibers.  

The metal nano-cluster composite glasses synthesized by ion implantation have been shown as 
particularly promising nonlinear photonic materials [1, 64, 66-68]. Nanometric metal particles 
can exhibit a nonlinear optical response several orders of magnitude larger than bulk metals due 
to a phenomenon referred to as surface Plasmon resonance. When the particle size ranges from 
nanometer to a few tens of nanometers, confinement results in the possibility of resonantly 
exciting the electron gas collectively by coupling with an appropriate oscillating electromagnetic 
field. As the local electric field in the particles is enhanced due to the oscillation of the electron 
gas, the metal nonlinear optical response can be amplified as compared to the bulk solid one 
[69]. 

Metal nano-cluster composite materials could offer the possibility to realize all-optical 
switching devices which would operate in a time range faster than the electronic ones without 
the need of converting optical signals to electrical ones. These devices are essentially based on 
nonlinear optical properties of materials, i.e. changes of the refractive index or absorption 
coefficient of materials caused by an intense optical beam or by a strong electric field.  

Recent experiments have shown that standard glass substrates containing nanoparticles of Au 
can be regarded as one of the most promising nonlinear optical materials [70-78]. The 
experiments have shown that such materials exhibit very strong nonlinear third order 
susceptibility χሺ3ሻ. 

 

Metal nanoparticle doped glasses have promising properties for potential application in optical 
devices such as all optical switching devices [67]. These properties sensitively depend on their 
size, shape, density and spatial distribution.  

Metal nanoparticles are synthesized in glass matrix by various methods [79], such as direct ion 
implantation [80, 81], sol-gel method [82] and ion exchange [83, 84]. Conventionally, ion 
exchange is used to introduce silver ions in glass by immersing the samples into a molten salt 
such as AgNO3, and additional processing such as light irradiation or thermal annealing then 
follows to generate particles. 

Metal glass composite samples, prepared by employing ion implantation method, have been 
measured. Au+ ions were implanted into the silicate glasses using an accelerator at the Nuclear 
Physics Institute in Prague, Czech Republic. The energy of the implanted Au+ ions was 1701 
keV. The fluence of the Au+ ions into Glasses was kept 1016 cm-2. The as-implanted glasses 
were annealed at temperatures of 600 °C  for 5 h [85]. Fig.  4.8 shows the depth distribution of 
nanoparticles in a 402 nm thick layer 500 nm under the surface.  
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The following considerations should be taken into account in order to determine an accurate 
MPA coefficient of a metal glass composite.  

a) in a metal glass composite, many factors such as the type of the host medium, the kind of the 
implanted ions, the amount of the ion fluence, the energy of the implanted ions, the annealing 
temperature and the annealing time influence the size, shape and depth distribution of 
nanoparticles formed in the glass. Thus, in order to verity the affect of any factor (mentioned 
above) on the MPA coefficient the other factors must be kept identical.  

b) The thickness of the nanoparticles layer is very narrow, in the range of a few hundreds of 
nanometers, whereas the thickness of the substrates is, at least, few hundreds of micron. 
Therefore, a thousand times thicker host medium might have a contribution to the nonlinear 
absorption comparable to that of the nanoparticle layer itself. Thus the main challenge and 
difficulty in the determination of MPA coefficient of these metal glass composite samples is the 
subtraction of the substrate contribution from the entire nonlinear absorption. 

c) The essential points and guidances mentioned in parts d, f, g and h in section 4.3.1 should 
also be considered and followed.   

 

 

 

Fig.  4.12. Depth distribution of gold nanoparticles introduced in glass employing ion implantation method for two 
different fluences 
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Fig.  4.13. TEM image of gold nanoparticled implanted in glass 

4.4.     Z-scan setup for nonlinear absorption measurement 
Our setup for the open aperture Z-scan measurement to determine MPA consists of the following 
parts: 

A - Laser source: a Ti:sapphire laser as described in section  3.1 was used. The Laser beam 
diameter is 15 mm, the shortest pulse width is 25, the central wavelength is 798 nm, the 
bandwidth is 44 nm and the beam quality factor is 2.2. 

B - Attenuator: A continuous variable attenuator (Model C-VARM from COHERENT 
Company) with a maximum attenuation by a factor of 10−7 and a fine pitch adjustment control to 
precisely set the attenuation is employed to attenuate the pulse energy from several hundred μJ 
down to a few nJ. Using this attenuator enables us to change the laser intensity for different Z-
scan measurements. 

C - Beam splitter: a large 5 cm diameter beam splitter splits the laser beam into two parts with 
fraction of 1/3 and 2/3. The less intense part is directed towards the reference diode and the more 
intense part propagates straightly through the focusing lens.   

D - Focusing lens:  25 mm diameter plano-convex lenses with different focal lengths were 
employed. The focal length of employed lenses ranged from 175 to 400 mm depending on the 
sample thickness in order to fulfill the thin sample criterian. It should be noticed that the 
Rayleigh range, which is proportional to the focal length square of the focusing lens, must be 
larger than the thickness of the sample. 
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E - Translation stage: using a stepper motor (DC-Motor model MFA-CC from Newport 
Company) enabled us to move the sample up to 25 mm along the beam propagation direction 
through the beam focus in minimum steps of 50 nm. This motor was handled and controlled by 
computer exploiting a Lab VIEW program.  

F – Cuvette: for liquid samples like dyes or photoinitiator solutions, a 0.2 mm thick one-time 
flow cell (170.700 QS from HELLMA Company) connected to a syringe pump (NE-300 from 
SYRINGPUMP) providing a wide range of flow rates was used.  

G - Collecting lens: A large diameter short focal length lens (50 mm diameter and 60 mm focal 
length) was used. This ensures that the entire energy transmitted through the sample is collected 
and directed toward the detecting diode to be measured. 

H - Detectors: Two Si diodes with 1 cm2 detecting area were used as reference and detecting 
diode. Both diodes were connected to a picoscope. The signal measured by the detecting diode is 
divided by the signal receiving from the reference diode to eliminate the influence of the laser 
pulse energy fluctuation.  

I - Neutral density filter: For adjusting the absolute intensity at the diodes, but to stay within their 
dynamic range, neutral density filters were used. A low-pass filter also was mounted before the 
detecting diode to block unwanted emissions such as up-converted fluorescence from the excited 
sample. 

J - Picoscope: The signals at the diodes were recorded with a two-channel personal computer 
oscilloscope (Picoscope3204 from Picotech Company). 

K - Computer: The computer software (Lab View) analyzed the intensity of individual laser 
pulses (including averaging over several laser shots) and also handled the movement of the 
translation stage as well as the entire data acquisition process.  

 

Fig.  4.14. Open aperture Z-scan setup 
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4.5.     3D structuring unit 
This unit was used to make 3D microstructures using two or three photon absorption. It consists 
of the following parts: 

A – Laser source: a Ti:sapphier laser producing 150 fs pulses at a repetition rate of 80 MHz was 
used. The average output power is about 300 mw corresponding to a few nJ pulse energy. 

B – Acousto-optic modulator: it is used as a shutter with nanosecond response time. It can block 
the laser beam or allow a certain number of pulses to pass through it by receiving an appropriate 
order from computer. 

C – Polarizer: it is mounted on a rotation stage controlled by computer. The laser beam intensity 
can be controlled by rotating this polarizer. 

D – Telescope: in order to increase the beam size on the focusing objective that leads to produce 
a tighter focused laser beam within the resin. It helps to create structurs with finer resolution.  

E – 3D translation stage: three piezoelectric translation stages were installed on a heavy granite 
stone enabling us to scan the sample in three orthogonal directions. 

F: Camera: it is utilized to visualize the polimerzation process. It is needed to find the focal point 
and also to specify whether the laser power is enough to trigger the polymerization or not. 
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Fig.  4.15. 3D structuring unit 
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Chapter 5   

5. Measurements, results and discussion 
Variety of samples such as chemical compounds (including a series of PIs and photo-grafting 
molecules) and metal-glass composites (including different types of glasses in which gold 
nanoparticles are implanted) were investigated. These samples were prepared and characterized 
somewhere else [62, 81, 86]. Their absorption spectra show that none of them exhibits 
absorption at the wavelength used in the Z-scan measurements. An OA Z-scan setup was 
installed in order to determine first the order of nonlinear absorption and then the MPA cross 
section. Rhodamine B as a reference dye was used to check the accuracy of the theory as well as 
the setup. In this chapter, it is discussed which experimental conditions and criteria are required 
to extract a meaningful MPA cross section from a Z-scan trace. Then, the methods for 
determining the order of nonlinear absorption are presented. Next, the Z-scan data and results for 
all samples are illustrated and ultimately the correlation between sample characters and the OA 
Z-scan results will be discussed  

5.1.     Conditions and criteria in OA Z-scan measurements 
 In order to extract an accurate MPA coefficient or cross section from measured Z-scan data 
using equations derived in chapter 2, several criteria must be met in performing the Z-scan. 

5.1.1.     Optimum range of pulse energy  

To measure an appropriate Z-scan signal, from which the MPA cross section can be extracted 
using equations obtained in chapter 2, the pulse energy should be adjusted lower than a threshold 
value at which the solvent (in case of PIs) or glass substrate (in case of metal glass composite) 
shows nonlinear absorption. It also be noticed that the pulse energy must be kept below the value 
corresponding to a normalized transmittance of 0.765. The minimum pulse energy is determined 
as the value at which the nonlinear medium starts to nonlinear absorption.      

5.1.2.     Thin sample criterion 

The analytical calculations to obtain the normalized transmittance in the Z-scan experiment were 
carried out under the thin sample approximation. In this approximation the sample thickness is 
assumed smaller than the Rayleigh range of the focused laser beam within the sample. This 
assumption facilitates the calculation since, the laser beam divergence and then the intensity 
reduction due to linear diffraction or nonlinear refraction is negligible and can be ignored. In 
case of chemical compound measurements, a 300 mm focal length plano-convex lens was 
employed. It focuses the 15 mm diameter laser beam into a 22 μm radius spot resulting in a 
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Rayleigh range of 0.86 mm. The Rayleigh range is four times larger than the thickness of the 
sample (A 0.2 mm cell containing a chemical compound) that fully fulfills the thin sample 
criterian. In case of metal-glass composite measurements, a 175 mm focal length plano-convex 
lens was employed. It focuses the 15 mm diameter laser beam into a 13 μm radius spot resulting 
in a Rayleigh range of 0.3 mm which is very much longer than the thickness of the nanoparticles 
layers within the glass substrates (few hundreds of nanometers).  

5.1.3.     Compound preparation conditions 

For the OA Z-scan measurements an equimolar concentration of the compounds (1×10-2 M) was 
prepared using spectroscopic grade solvents. For the two Rhodamine compounds, methanol 
(MeOH) was chosen as solvent as often described in the literature in order to achieve a reliable 
reference and to test the Z-scan device. The other initiators were all dissolved in tetrahydrofuran 
(THF) as all compounds showed a sufficient solubility in this solvent. For comparison, it is 
important that the same solvent is used for all compounds, because a different polarity of the 
solvent causes a change in activity of the molecules. 

5.1.4.     Base line fluctuation 

The measured Z-scan trace is the quotient of the transmitted signal (measured by the detecting 
diode) by the reference signal (measured by the reference diode). If one scans along the beam 
axis without a sample mounted on the stage, the measured Z-scan is expected to be an exact 
straight line. Practically, this is not the case due to several reasons such as the limited precision 
of the Picoscope. In order to reduce these errors, the Labview software was designed so that it 
can calculate the average pulse energy when the sample is irradiated by a large number of laser 
pulses. It turned out that 300 pulses was a sufficient number of pulses. Additional increase in the 
number of pulses per each step could not result in further reduction of the fluctuation in the so-
called straight base line. 

5.1.5.     Determining the scanning length and normalizing the Z-scan signal 

The sample mounted on the translation stage should be located at a place so that the middle of 
the scanning range coincides with the focusing point of the focused laser beam. Using a DC 
motor as a translation stage allows to scan the sample for a maximum length of 25 mm. it is not 
always necessary to scan the sample for 25 mm but a shorter length might be enough depending 
on the thickness of the sample and also the Rayleigh range. The important issue is that the Z-
scan signal should have straight horizontal wings on both sides showing the regions where no 
nonlinear absorption occurs due to the low intensity. It means that the scanning should start far 
enough away from the focus where the intensity is not sufficient to induce nonlinear absorption. 
The straight part of the Z-scan signal is of great importance for determining the base line in order 
to normalize the transmittance.  

5.1.6.     Determining the sufficient flow rate of the compounds 

The formation of active species during the MPA cross section measurement for PIs leads to a 
decrease in the concentration of initiators. This decrease would reduce the reliability of the MPA 
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measurements as it is based on several individual measurements extended over a certain period 
of time during which the reduction in the number of initiators occurs. Therefore, during the 
entire MPA measurement for the same compound the same concentration should always be 
present. This can be achieved by a continuous material flow using a one-time flow-cell 
connected to a syringe pump. As shown in Fig.  5.1 experimental tests exhibited that the 
absorption in case the material is kept flowing through the laser beam intersection is almost 
twice the absorption without flow. The reason for this is photo-degradation. This can be easily 
ascribed to the photochemical processes which form the active species for polymerization and 
which display a significantly different absorptive behavior. These tests also revealed that 5 ml/h 
is the optimum flow rate to refresh the irradiated sample in the focal volume in a reasonable time 
without losing too much compound; therefore all measurements for determining the MPA cross 
section of PIs have been carried out with a 5 ml/h flow rate. 

 

 

Fig.  5.1. Measured Z-scan of B3FL with the same pulse energy of 150 nJ but different flow rates 

5.2.     Determining the order of nonlinear absorption 
Appearance of the closed aperture Z-scan signal is a signature of positive or negative 
nonlinearity corresponding to self-focusing and self-defocusing. In open aperture Z-scan 
measurements, the appearance of the signal reveals that whether the saturation of absorption 
(SA) has occurred or MPA has occurred. In Fig.  5.2, part (a) demonstrates a typical signal in the 
case of MPA whereas (b) display a typical signal in the case of SA.   
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Fig.  5.2. A typical open aperture Z-scan signal, (a) shows MPA and (b) shows SA 

The main task now is the determination of the order of the nonlinear absorption. Although Fig. 
 5.2 (a) demonstrates that MPA has occurred in the medium under investigation but it does not 
reveal any information about the order of MPA; It does not answer to this question that whether 
2PA has occurred or 3PA or even higher order of MPA. The following methods can be applied 
to determine the order of MPA. 

5.2.1.     Comparing the extracted Rayleigh range from fitting curves with the 
experimentally measured Rayleigh range  

By fitting Eq.  (2.178) and  (2.208) to the measured Z-scan data, 2PA and 3PA coefficients can be 
extracted respectively. In addition to this, the Rayleigh range can also be extracted from the 
fitting curves. This gives us the possibility for determining the order of MPA. This method can 
be illustrated by presenting the following example. In Fig.  5.3 the data points are measured Z-
scan data for Rhodamine B. In figure (a) the solid line is the fit curve using Eq. (2.178) from 
which a Rayleigh range of 0.87 mm was extracted. In figure (b) the solid line is the fit curve 
using Eq.  (2.208) from which a Rayleigh range of 1.64 mm was extracted and in figure (c) the 
solid line is the fit curve using Eq.  (2.208) while the Rayleigh range has been fixed equal to 0.86 
mm, the same value as experimentally measured . Fitting Eq.  (2.178) to the measured Z-scan 
data as shown in Fig.  5.3 (a) leads to firstly a well-fitted curve to the data and secondly an 
extracted Rayleigh range that is in good agreement with its measured value. Comparison 
between figure (a) and (b) or between figure (a) and (c) results in this conclusion that 2PA has 
occurred in Rhodamine B because, in figure (b) the extracted Rayleigh range is very different 
from its measured value and in figure (c), the fit curve is not well-fitted to the data in comparison 
with the fit curve in figure (a).  
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Fig.  5.3. Measured Z-scans for a 0.2 mm thick cell of Rhodamine B. (a) shows the fit cure assuming 2PA from 
which the Rayleigh range was extracted 0.87 mm. (b) shows the fit cure assuming 3PA from which the Rayleigh 
range was extracted 1.64 mm. (c) shows the fit cure assuming 3PA with a Rayleigh range fixed to 0.87 mm in the 
fitting process 

5.2.2.     Slope of log (1-T) versus log (I) as a signature for determining the 
order of nonlinear absorption 

From Eq.  (2.185) (derived for 2PA) the following equation can easily be obtained.  
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 (5.1)  

The above equation indicates that the slope of log (1-Tmin) versus log (I) is one.  

From Eq.  (2.209) (derived for 3PA) the following equation can be obtained. 
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Eq.  (5.2) indicates that the slope of log (1- Tmin) versus log (I) is two assuming 3PA. Therefore, 
one can determine the order of MPA via examining the slope of log (1- Tmin) versus log (I). Fig. 
 5.4 (a) shows the log (1- Tmin) versus log (I) for B3FL. The slope of the trace was measured to be 
1.05 that is an indicative of 2PA process. Fig.  5.4 (b) shows the log (1- Tmin) versus log (I) for 
BAC-M. The slope of this trace was measured to be 1.94 that is an indicative of 3PA process. It 
should be mentioned that 2PA process in B3FL and 3PA in BAC-M were proved using the 
method presented in section 4.2.1. 

 



146 

 

 

Fig.  5.4. Log (1-T) versus log (I) for B3FL (a) and BAC-M (b). 

5.2.3.     Deducing from linear absorption spectra  

To some extent, linear and nonlinear absorptions are linked. The 2PA generally occurs at shorter 
wavelengths than twice the linear absorption peak [87] ( 1 2 12pA pA pAλ λ λ〈 〈 ). Based on this link 
one can predict the order of MPA by measuring the linear absorption spectra. Fig.  5.5 shows the 
linear absorption spectra of B3FL and BAC-M as an example. The wavelength of the laser beam 
used in our experiments was 798 nm that corresponds to a photon energy of 1.56 eV. The peak 
absorption for B3FL is 430 nm corresponding to a photon energy of 2.9 eV. Therefore, 
simultaneous absorption of two photons of 798 nm provides enough energy (3.12 eV) to 
complete this transition in B3FL.  The peak absorption for BAC-M occurs at 355 nm that 
corresponds to a photon energy of 3.5 eV. Therefore two photons of 798 nm cannot provide the 
required energy to complete this transition in BAC-M and hence, three photons must be 
simultaneously absorbed to excite this molecule from the ground to the excited state. In this way 
the linear absorption spectra can be utilized to give a reasonable proof to predict the order of 
MPA.  

 

 

  Fig.  5.5. Linear (1P) absorption spectra for B3FL (a) and BAC-M (b) 
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For all samples, the three methods presented in above sections have been applied to ensure the 
deduced order of MPA.  

5.3.     Evaluating the 2PA properties of synthesized 2PIs 
In this section the Z-scan results obtaineded for 2PIs are presented from which the 2PA cross 
section of examined compounds will be extracted. The synthesized 2PIs in terms of their 2PA 
behavior will be compared. The initiating activities of these compounds, that display their ability 
to be exploited in 2PIP based microstructuring, are discussed. 

5.3.1.     Determining the 2PA cross section of 2PIs 

The first step in measuring the MPA cross section of a new PI is to establish a reference. For this 
purpose a Rhodamine B sample with otherwise identical experimental parameters is a good 
choice, because it is an accessible and inexpensive compound with its linear and nonlinear 
optical properties well determined and reported in literature. For the Rhodamine B compound, 
methanol (MeOH) was chosen as the solvent. When the laser starts working it is required to wait 
for about half an hour for the pulse energy approaches its maximum value and becomes stable. 
Before starting the Z-scan both signals from the reference and the collecting diodes should be 
checked and the height of the signal should be adjusted so that it should be neither saturated nor 
too weak. The cuvette filled with Rhodamine B was mounted on the translation stage and the 
beam waist was adjusted at the middle of the scanning range. The scanning range was chosen 16 
mm and the scanning points were chosen to be 41 points in order to translate the sample within 
an experimentally acceptable distance but for which a reasonable difference in transmittance is 
observed. In each step the sample was irradiated with 300 pulses. The power of each individual 
pulse is measured by the picoscope.  The individual pulse energy and then  the average pulse 
energy over 300 pulses is calculated by the program. In order to fit Eq.  (2.178) or  (2.208) to the 
Z-scan data the transmittance must be normalized. For this purpose the entire transmittance 
measured during a complete scanning must be divided by the transmittance measured in the 
linear regime (referred to as the base line); where, the sample is far enough away from the beam 
waist so that the intensity is not high enough to induce nonlinear absorption. In Fig.  5.6 (a) the 
base line corresponds to a transmittance of 3.65. In Fig.  5.6 (b) the normalized transmittance as 
the result of dividing the transmittance by the base line is shown. The solid pink line indicates 
the fit curve assuming 2PA whereas the solid orange line represents the fit curve assuming 3PA 
while the Rayleigh range was fixed equal to 0.86 mm in both fitting process. By comparing the 
quality of being well-fitted for these two fit curves and also examining the methods presented in 
section 4.2, it was concluded that 2PA is the predominant nonlinear absorption process occurring 
in Rhodamine B.  
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Fig.  5.6. Measured Z-scan of a 0.2 mm cuvette filled with Rhodamine B (a). the blue dashed line shows the base 
line. (b) shows the normalized transmittance along with the fit curves assuming 2PA (pink line) and 3PA (orange 
line)  

From fitting Eq.  (2.178) to the measured normalized transmittance the parameter q0=α2LeffI is 
extracted from which 2PA coefficient is calculated. However, in order to calculate the average 
value of 2PA coefficient firstly and to verify the contribution of exited state absorption (ESA) 
secondly, several Z-scans at different pulse energies for each sample have been carried out. 
Unlike the conventional local fitting which separately treats data at each pulse energy the global 
fitting for processing Z-scan data was used. This allows processing a set of experimental data 
measured with different pulse energies together [88]. In Fig.  5.7 (a) the measured Z-scans of a 
0.2 mm thick cuvette of Rhodamine B for different pulse energies are depicted. Solid gray lines 
show the fit curves using Eq.  (2.178) from which q0 corresponding to different energies was 
extracted. In Fig.  5.7 (b) the results for q0 versus pulse energy is depicted. The plot shows a linear 
behavior that is a clear indication for pure 2PA and nonexistence of ESA or any higher order 
nonlinear absorption. By fitting Eq.  (5.3) to the extracted q0 versus pulse energy, the 2PA 
coefficient was extracted and then the 2PA cross sections of 118 GM was obtained using Eq. 
 (2.150) ( 3

2 2 10ANσ ωα ρ −= ×h ). 

 
 0 2 2

0

ln 24eff
Eq L

w
α

π π τ
= (5.3)  

where Leff=0.2 mm, w0=22 μm, τ=100 fs, α2 is the 2PA coefficient and E is the pulse energy that 
is obtained by the dividing the laser output power by the repetition rate (1 kHz). 
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Fig.  5.7. Measured Z-scans of 0.2 mm thick cuvette of Rhodamine B at different pulse energies (a) and q0 versus 
pulse energy (b) 

In the next step, the Z-scan measurements for all initiators were carried out as performed for 
Rhodamine B. For the OA Z-scan measurements an equimolar concentration of the compounds  

(1×10-2 M) was prepared using spectroscopic grade solvents. The initiators were all dissolved in 
tetrahydrofuran (THF) as all compounds showed a sufficient solubility in this solvent. For 
comparison, it is important that the same solvent is used for all compounds, because a different 
polarity of the solvent causes a change in activity of the molecules. For all synthesized PIs the 
methods suggested in section 4.2 were employed to determine the order of nonlinear absorption. 
The results revealed that 2PA is the predominant nonlinear absorption process occurring in all 
these compounds. 

In Fig.  5.8 (a) measured Z-scan of a 0.2 mm cuvette of B3K for different pulse energies range 
from 35 nJ to 215 nJ are shown. Solid lines represent fit curve using Eq.  (2.178) under 
assumption of 2PA. In part (b) the q0s extracted from figure (a) are depicted versus pulse energy. 
The solid straight line demonstrates the fit curve using Eq.  (5.3) from which a 2PA cross section 
of 260 GM was obtained for B3K. 

 

 

Fig.  5.8.  Measured Z-scans of B3K for different pulse energy (a). q0 versus pulse energy (b). 
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Fig.  5.9 (a) shows the measured Z-scans of B3BP for different pulse energy ranges from 25 nJ to 
165 nJ. Fitting Eq.  (2.178) to the experimental Z-scan data gives q0 for different energies that are 
shown in part (b). Solid straight line demonstrates the fit curve using Eq.  (5.3) that proves the 
predominance of 2PA and also confirms that no ESA has occurred in this compound. 2PA cross 
section was found to be 317 GM for B3BP compound. 

 

 

Fig.  5.9.  Measured Z-scans of B3BP for different pulse energy (a) and q0 versus pulse energy (b) 

Fig.  5.10 shows measured Z-scans of B3FL for different pulse energies ranges from 20 nJ to 140 
nJ. The highest 2PA cross section in 2PIs was measured for this compound that is 443 GM. 

 

 

Fig.  5.10. Measured Z-scans of B3FL for different pulse energy (a) and extracted q0 versus pulse energy 

In Fig.  5.11 measured Z-scans for 3,6,B3FL are depicted.  Normalized transmittance was 
measured for different pulse energies range from 30 nJ to 210 nJ. Extracted q0s scales linearly 
with pulse energy that is a signature of 2PA process. By fitting Eq.  (5.3) to extracted q0s for 
different pulse energy, the 2PA cross section of 296 GM was found for 3,6,B3FL. 
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Fig.  5.11. Measured Z-scans of 3,6,B3FL for different pulse energy (a) and q0 versus pulse energy 

Fig.  5.12 shows measured Z-scans (a) and extracted q0s (b) for BB3FL. Fit curves in part (a) as 
well as (b) demonstrate the predominance of 2PA process. 2PA cross section of 370 GM was 
measure for BB3FL. 

 

 

Fig.  5.12. Measured Z-scans of BB3FL for different pulse energy (a) and q0 versus pulse energy 

In Fig.  5.13 Z-scans data for B3AN and fit curve assuming 2PA are shown in part (a) and 
extracted q0s for different pulse energy are depicted in part (b). 2PA cross section for this 
compound was measured 234 GM.  
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 Fig.  5.13. Measured Z-scans of B3AN for different pulse energy (a) and q0 versus pulse energy 

 

In Fig.  5.14 Z-scans data for BB3AN and fit curve assuming 2PA are shown in part (a) and 
extracted q0s for different pulse energy are depicted in part (b). 2PA cross section for this 
compound was measured 255 GM.  

 

 

Fig.  5.14. Measured Z-scans of BB3AN for different pulse energy (a) and q0 versus pulse energy 

5.3.2.     Comparison of the 2PA probability of 2PIs and Discussion 

In Table 1 2PA cross section for all initiators is summarized.  

Table 1 

Compound Rhod B1 B3AN BB3AN B3K 3,6,B3FL B3BP BB3FL B3FL 

2PA cross section (GM) 118 234 255 260 296 317 370 443 

 1 Rhodamine B is a dye and was examined as a reference. 

In Fig.  5.15 (a) q0 versus pulse energy for all samples is depicted. Fig.  5.15 (b) also provides a 
comparison between 2PA cross section of all compounds. 
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Fig.  5.15. q0 versus pulse energy for all synthesized compounds (a) and a graphical representation for comparing the 
2PA cross section in all samples (b)  

It is theoretically predicated and experimentally found that the 2PA cross section can be 
enhanced by increasing the conjugation length and the donor and acceptor strengths [89, 90]. 
Our experimental results obtained from Z-scan measurements for 2PA evaluation also 
manifested that the B3BP initiator with longer conjugation length reveals a larger cross section 
value (317 GM) than B3K of 260 GM. The lower 2PA cross section of B3AN compared to that 
of B3BP may be due to the relatively lower absorption in one-photon spectra at about 400 nm, 
which indicates that the 2PA peaks in 2PA spectra are shifted in wavelength away from 800 nm. 
Interestingly, 3,6,B3FL, which theoretically should facilitate an intermolecular electron transfer 
process, exhibits a lower cross section value compared to B3FL. An explanation can be given by 
the red-shift-induced low 2PA at the given wavelength. Among the synthesized compounds, 
B3FL had the highest 2PA cross section value of 443 GM. One reason is the suitably strong 
absorption around 400 nm, which ensured the considerable 2PA at 800 nm. However, 
determination of the 2PA cross section gives only information about the absorption behavior 
(similar to the extinction coefficient of one-photon absorption in Lambert-Beer’s law). Thus, 
2PIP structuring tests were performed to further characterize the new PIs. 

5.3.3.     Comparing the initiating activities of the PIs via determining the 2PIP 
structuring performance and structural quality 

To estimate the activity of the PIs, defined test structures (lateral dimension: 50 ൈ50 μm, 10 μm 
hatch-distance, 0.7 μm layer-distance, 20 layers) were written into the monomer formulation by 
means of 2PIP. A 1:1 mixture of Trimethylolpropane triacrylate (TTA) and ethoxylated (20/3) 
trimethylolpropane triacrylate (ETA) as an acrylate-based test resin with the same molar PI 
concentration of 6.3 ൈ10-6 mol PI/g resin was used. For the direct laser writing of 3D structures, 
a Ti-sapphire laser providing NIR pulses at 780 nm wavelength with a pulse duration of 100 fs 
was used. The system operates at a repetition rate of 80 MHz. The laser intensity was screened in 
a range of 1–32 mW (measured after passing objective). The laser is focused by a 100ൈ oil 
immersion microscope objective (NA = 1.4) and the sample is mounted on a high-precision 
piezoelectric XYZ scanning stage with a 200 nm positioning accuracy. For all samples the same 
fabrication process was implemented: The optical material was drop-cast onto a glass substrate. 
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Subsequently, the samples were exposed to the laser beam, and the focus was scanned across the 
photosensitive material, which leads to an embedded 3D structure inside the material volume. 
After laser writing, the unexposed material was removed by development of the structure in 
ethanol. The resulting structures, particularly their structural dimensions, integrity and surface 
quality, were studied by means of SEM. 

5.3.4.     Comparison between the structuring activity of the PIs and discussion  

Fig.  5.16 (a) shows the structuring process windows for various newly synthesized PIs and some 
commercially available PIs and Fig.  5.16 (b) shows four quality-classified structures indicated by 
1, 2, 3 and 4. The different color of the bars and their corresponding numbers in Figure (a) 
indicate the quality of the structures. At the lower end of each ideal processing window in the 
diagram, only not well-connected structures could be obtained after the standard post processing 
procedure, as the threshold of initiation is not reached. Above that, class 1 defines excellent 
structures with fine hatch-lines and class 2 good structures with thick hatch-lines (compared to 
class 1). Generally, broader “perfect” processing windows (class 1 and 2) and lower laser 
intensities are desired in terms of high throughput in mass production because this allows a 
splitting of the initial laser beam for parallel processing with multiple laser heads at high feed 
rates, while thermally induced decomposition of the material can be avoided. Samples rated as 
class 3 have shapes that can be identified but with small mistakes (e.g. holes, exploded regions 
caused by overexposure). Parts structured with laser intensities rated as class 4 no longer showed 
acceptable results. The shapes are no longer identifiable with completely missing walls and/or 
vast holes. 

 

 

Fig.  5.16. TPIP screening tests for different PIs (a) and Classification of the structures by the typical quality of their 
shapes (b). 1: excellent structures with fine hatch-lines, 2: good structures with thick hatch-lines, 3: having identified 
shapes but with small mistakes and 4: non-acceptable results. 

In our measurements, the well-known initiator from the literature R1 can be used to build nicely 
shaped structures at low laser intensities. The commercially available PI Irgacure 369 did not 
show  good results at 800 nm at the given PI concentration (6.3× 10-6 mol PI/g resin), which is 
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in good agreement with the low 2TA cross section [91]. The benzophone-based initiator B3BP is 
able to build up nice structures at similarly low laser intensities as R1, but its ideal processing 
window is significantly smaller. In the structuring tests, it was not feasiable to obtain any good 
results with B3AN due to its poor solubility (data not shown). Although BB3AN, to some extent, 
showed higher solubility in the resin but high laser intensities are required to obtain good 
structures. This might be explained by the relatively small 2TA cross section and also the low 
solubility in the resin. 

The initiators 3,6-B3FL, B3FL and BB3FL showed very good results in these tests. The ideal 
processing windows are broader than that of the references, but the required laser intensities are 
slightly higher. Despite the lower cross section compared to that of B3BP, the ideal window of 
3,6-B3FL is much broader. B3FL exhibited much broader ideal processing windows than those 
of 3,6-B3FL, which is in good agreement with the Z-scan values. The lower laser intensity 
required for BB3FL might be attributed to the increased solubility. Laser intensity as low as 2.47 
mW was required to obtain nice structures at higher concentrations (3.2 ×10-5 mol PI/g resin 
which is 5 times higher than that of previous structuring test) of BB3FL. B3FL turned out to be 
the best performing initiator in our tests having the broadest ideal structuring process window at 
low concentration (6.4× 10-6 mol PI/g resin) and good solubility in the resin. 

The tests were repeated also with lower molar PI concentrations in order to determine the lowest 
possible PI concentration under these conditions. For the lower concentration (1.6×10-6 mol PI/g 
resin, 0.1%wt of B3FL) the results for all initiators are very similar to those at higher 
concentration, with the only difference having a slight shift of the ideal processing window 
towards higher laser intensities. 

Additionally, more complex 3D structures were inscribed into the material volume using B3FL 
(6.4 × 10-6 mol PI/g resin) as initiator as shown in Fig.  5.17. These shapes are showing perfectly 
the advantages of 2PIP compared to other rapid prototyping techniques. High spatial resolution, 
which is otherwise inaccessible, and complex 3D structures with massive overhangs such as the 
Stephen's Cathedral of Vienna (Fig.  5.17a) can be easily obtained [86]. 
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Fig.  5.17. 3D structures (resin ETA/TTA 1:1, B3FL as initiator): (a) St. Stephen's Cathedral; (b) Tarantula Spider; 
(c) detail of the London Tower Bridge; (d) detailed view of the woodpile structure 

Azadi Tower 

 in Azadi square 

Tehran-Iran 
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5.4.     Multi-photon induced photo-grafting  
Molecular grafting is a versatile tool providing means for tailoring physio-chemical properties of 
surfaces. True 3D grafting has been recently achieved by multi-photon excited process. MPA 
requires more intense laser beam and also high MP absorptive materials. The higher the MPA 
cross section the lower light intensity is required. For this reason, much effort has been put on 
designing molecular structures with higher MPA. Determining the MPA cross section is the 
main task after producing a new compound. The Z-scan theory was extended in order to 
determine the order of any nonlinear absorption and then to determine the nonlinear absorption 
cross section. 

In this section the measurements for the exact determining of the order of nonlinear absorption 
and then 3PA cross section of a reagent, with the marketing name of BAC-M, as a grafting 
molecule are presented. At the end, the efficient exploitation of this compound in 3D 
microstructuring via photo-grafting process will be exhibited. 

5.4.1.     Determining the 3PA cross section of 2,6-Bis(4-azidobenzylidene)-4-
methylcyclohexanone (BAC-M); a reagent as a grafting molecule 

Z-scan measurements for the exact determining of the nonlinear absorption cross section of 
BAC-M were performed using the same setup as used for PIs. It is of primary importance that 
the order of nonlinear absorption must be first determined. To determine the order of 
nonlinearity, 2PA and 3PA respective equations were fitted to the experimentally measured Z-
scan data as shown in Fig.  5.18 (a). The blue line, which is well fitted to the data points, 
represents the fit curve assuming 3PA whereas the pink line is the fit curve under assumption of 
2PA in BAC-M. By looking at both fit curves, it can visually be estimated that the 3PA process 
is the most predominate nonlinear absorption occurs in BAC-M. Fig.  5.19 (a) shows the Z-scans 
performed for BAC-M with different pulse energies ranging from 90 nJ (corresponds to a peak 
intensity of 1.4ൈ1011

 W.cm-2) up to 220 nJ. No nonlinear absorption was observed for Pulse 
energies lower than 90 nJ. Pulse energies higher than 220 nJ was not used because the solvent 
itself started to exhibit nonlinear absorption using pulse energies higher than 230 nJ that makes 
so difficult to subtract the pure 3PA for BAC-M from the effective 3PA. From Fig.  5.19 (a) the 
maximum normalized transmittance corresponding to each pulse energy can be measured. To be 
certainly convinced that our prediction of 3PA in BAC-M is correct, the log (1-T) versus the log 
(I) was also plotted to measure the slope of the curve, by which one can determine the order of 
nonlinear absorption. By fitting a linear equation to the data in Fig.  5.18 (b) a slope of 1.94 was 
measured, which is an indication of a 3PA process. It is also mentioned that the linear peak 
absorption of this compound occurs at about 355 nm, which corresponds to a photon energy of 
3.5 eV. This is greater than the energy of a pair of photons of 798 nm (used in the Z-scan 
experiment). Thus, three photons of 798 nm are needed to excite this molecule. Therefore, 
employing all three different methods presented in 4.2 for determining the order of nonlinear 
absorption in BAC-M revealed for certain that 3PA is the predominant nonlinear absorption 
occurs in this compound.  

It is worthwhile to mention this important fact that, exploiting higher order nonlinear absorption 
in photo-grafting or photo-polymerization leads to a finer structural resolution. It is due to this 
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fact that the nth order nonlinear absorption probability increases with the same order of intensity. 
For instance, a focal volume in which 3PA happens is smaller than that in 2PA case.   

  

                 (a) 

 

   (b) 
 

Fig.  5.18. (a) depicts a Z-scan of BAC-M along with the fit curves assuming 2PA (pink) and 3PA (blue). (b) shows 
the log (1-T) versus the log (I) for BAC-M 

In Fig.  5.19 (b) the results for P0, extracted from fitting Eq.  (2.208) to the experimental Z-scan 
data, is plotted versus pulse energy. The plot shows a linearity dependence that provides an 
additional evidence proving the predominance of 3PA process and absence of excited state 
absorption or any other order of nonlinear absorption in BAC-M. By fitting the linear equation 

0 3 02 'effp L Iα= to the extracted data for P0, shown in Fig.  5.19 (b), the 3PA coefficient α3 for 

BAC-M was obtained 1.15ൈ10-4
 (cm3.GW-2) and then, the 3PA cross section σ3 for BAC-M was 

calculated 1.19ൈ10-78
 (cm6.S2) from Eq.  (2.152).  

 

 

Fig.  5.19. Measured Z-scans of BAC-M for different pulse energy (a) and p0 versus pulse energy 
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What can be learned from the above measurement is that 1). Analytical drived equations in 
chapter 2 for MPA are efficiently applicable to determine the order of nonlinear absorption and 
2). The results obtained from Z-scan measurements showing a high nonlinear absorption cross 
section for BAC-M is consistent with the structuring test indicating a high grafting activity.  

5.4.2.     3PA induced photo-grafting employing BAC-M as a grafting molecule 

The samples are prepared from Polyethylene glycol (PEG) containing 1 wt. % of photoinitiator 
4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone (Irgacure 2959) by 
photopolymerization with UV light. Photopolymerized material pellets are soaked in 50 % 
Ethanol (EtOH) solution in order to remove residual monomer and photoinitiator. Next the EtOH 
is replaced with Dimethylformamide (DMF) and the samples are stored until used. Before laser 
photo-grafting the samples were immersed into the 10 wt% solution of BAC-M (grafting 
molecule) in DMF.  

Ti:sapphire femtosecond laser (High Q, femtotrain) emitting pulses with duration of 80 fs at a 
73MHz repetition rate around 793nm is used for 3PA laser grafting. The laser beam was focused 
with a 20x microscope objective (Zeiss, NA=0.4) into the samples. The focused laser beam into 
the volume of the sample interacts with the material (BAC-M) via 3PA. Since the 3PA process is 
highly localized, the process of BAC-M immobilization on the PEG matrix is restricted to a 
limited volume. By moving the laser focus within the sample 3D patterns of immobilized 
molecules can be “recorded”. Immediately after the grafting procedure the samples are placed in 
DMF in order to remove residual BAC-M. Grafted BAC-M molecules were found to be 
fluorescent, thus the patterns produced by three-photon grafting was analyzed by a laser 
scanning microscope at the excitation wavelength of 488nm. 

Fig.  5.20 (a) shows an image of a TU logo pattern produced starting from a 3D CAD file in an 
“stl” format. To produce a set of coordinates, which is later transferred to the sample positioning 
system, the 3D model is sliced along the vertical direction. Each slice is then produced by a 
series of parallel line scans, with scanning direction rotated by 90°C for each successive layer.  

A 150µm large woodpile pattern shown in the Fig.  5.20 (b) is produced by a set of single scans 
at a distance of 25 µm within each layer. This pattern allows one to precisely evaluate the lateral 
size of the produced features. In this case the lateral resolution of around 4µm is obtained, by 
using a conventional 20 X microscope objective to focus the laser beam into the sample. 

Achieved feature size is substantially smaller than dimensions of most mammalian cells, while 
the patterned volume is large enough for studies of single cell attachment and migration. 
Therefore, presented three-photon grafting is a good tool for fabrication of tailored surfaces for 
studies of cell adhesion and migration [92, 93]. 
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Table 2. The compositions of the silicate substrates (in wt. %) 

Glass Substrate SiO2 Na2O Al2O3 CaO MgO K2O B2O3 BaO 

GIL49 63.2 24.4 1.1 5.6 5.3 0.5 - - 

Glass B 88.0 8.7 3.3 - - - - - 

BK7 68.3 8.8 - 0.1 - 8.1 12.1 2.5 

Silica glass 100 - - - - - - - 

 

Au+ ions were implanted into the silicate glasses under identical conditions using an accelerator 
at the Nuclear Physics Institute in Prague, Czech Republic. The energy of the implanted Au+ 
ions was 1701 keV. The fluence of the Au+ ions into Glasses was kept 1016 cm-2. The nucleation 
of metal nanoparticles was initiated during the subsequent annealing of the as-implanted 
glasses. The as-implanted glasses were annealed at the temperatures of 600 °C  for 5 h as 
identical conditions for all samples [85].  

Annealed Glasses were characterized by TEM that confirmed the presence of metal 
nanoparticles in as-annealed glasses. The most relevant results of the characterization of the 
nano-structures obtained by TEM analysis for all samples are summarized in Table 3. 

From Table 3, it is evident that the size and shape of the gold nanoparticles differ for the various 
types of glass although all the glasses were treated under identical conditions. Nanoparticles 
observed in glass B were small (1 - 7 nm) and were present in a relatively broad layer of 350 nm. 
In glass GIL49, nanoparticles with different sizes from 1 to 15 nm were found in a layer of 250 
nm. Nanoparticles in BK7 glass were typically 6 - 25 nm and were concentrated in a narrow 
layer of 100 nm.  
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Table. 3. The TEM analysis of four different silicate glass substrates implanted and annealed under 
identical conditions. 

Glass Substrate Thickness of layer with 
nanoparticles 

Size of nanoparticles Shape of 
nanoparticles 

Silica Glass not measured not measured not measured 

GIL49 250 nm 1 - 15 nm spherical 

Glass B 350 nm 1 - 7 nm spherical 

BK7 100 nm 6 - 25 nm Non-spherical 

 

5.5.1.  Determining of the 2PA coefficient of the implanted Gold Nanoparticles   

As seen from table 3, the gold nanoparticle layer in glass substrate has a thickness of about a few 
hundreds of nanometers. The thickness of glass substrates themselves are about one millimeter 
and indeed it is too difficult to polish them thiner than a few hundreds of microns. Thus, the 
thickness of the substratre is e few thousands times bigger than that of the embedded gold 
nanoparticle layer. In essence, the nonlinear absorption of a few hundres nanometers thick glassy 
host medum is much weaker than that of the gold nanoparticle layer but the nonlinear absorption 
of the entire substrate might be comparable with that of the embedded gold nanoparticle layer 
due the bigger thickness. In general, the order of nonlinear absorption in glass may differ from 
that in the the gold nanoparticle layer.  Therefore, the main challenge and difficulty in the 
determination of the order and the magnitude of the nonlinear absorption of the metal 
nanocluster glass composite is the substraction of the host medium contribution to the entire 
nonlinear absorption.    

It was focused on the measurement of nonlinear absorption and the study of the relationship 
between the nonlinear absorption and the size, depth distribution and shape of gold nanoparticles 
and also the structure of silicate glasses, which may be of crucial importance in designing e.g. 
nanoparticles based components for special applications.  

In the first step, the laser parameters regime was determined such that MPA can be clearly 
attributed (from the measured Z-scans) to the existence of gold nano-clusters. By varying the 
pulse duration from 25 fs to 200 fs (possible range of our laser system) no dependence on the 
pulse duration was observed. All measurements were decided to be carried out with the shortest 
pulses possible (25 fs). Furthermore, it had to be verified that no nonlinear absorption is due to 
the glass substrates themselves. For this purpose, the intensity at which the standard glass (i.e. 
non implanted glass) starts exhibiting nonlinear absorption was first determined. The pulse 
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energy threshold for nonlinear absorption of the standard glasses was measure 50 nJ therefore; 
all the Z-scan measurements for the as-implanted and as-annealed samples were performed with 
pulse energies lower than 50 nJ. In this intensity regime the Z-scan results depend on the laser 
pulse energy, i.e. the nonlinear absorption of the sample increases with increasing pulse energy 
(see Fig.  5.22. (a)).  

In the next step, the as-implanted glasses were measured. It was found that only as-implanted 
glass BK7 showed non-linear absorption. Applying recognition procedures for determining the 
order of nonlinear absorption led us to conclude that 2PA process is the most predominant 
nonlinear absorption occurring in as-implanted BK7 and all other as-annealed samples. By fitting 
Eq.  (2.178) to the Z-scan of as-implanted BK7 shown in Fig.  5.21, a 2TA coefficient of 11.08 
cm/GW was extracted.  

In the next step, the influence of annealing on the 2TA of the resulting nano-composite material 
has been studied. Fig.  5.21 shows Z-scans of as-implanted and as-annealed BK7 performed with 
the same pulse energy of 30 nJ. It is evident from Fig.  5.21 that the 2TA property of BK7 
showed a 40% increase after annealing. 

 

 

Fig.  5.21. Z-scan of gold nanoparticle as-implanted and as-annealed BK7 glass with the same pulse energy of 30 nJ 

 Fig.  5.22 (a) shows Z-scans of as-annealed glass BK7 measured with different pulse energies. 
As can be seen from Fig.  5.22 (a), the normalized absorbance increases linearly with laser pulse 
energy (laser intensity) which is an indication of 2TA due to the presence of gold nanoparticles 
in BK7. In Fig.  5.22 (b) q0 is plotted versus pulse energy that shows a linear behavior providing 
an additional evidence to prove the predominance of 2PA in as-annealed BK7. By fitting 

0 2 0effq L Iα=  to the extracted data for q0 in Fig.  5.22 (b) a 2PA coefficient of 16.25 cm/GW was 
obtained for as-annealed BK7. 
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   (a)                                                  (b) 
Fig.  5.22. Z-scans of as-annealed BK7 for different pulse energies (a) and q0 versus pulse energy for this sample (b) 

The same measurements were performed for all other as-annealed samples. The obtained 2TA 
coefficients for all samples are summarized in Table 4 and also are compared in Fig.  5.23. The 
highest 2TA coefficient of 16.3 cm/GW was obtained for as-annealed BK7 that had developed 
the largest non-spherical nanoparticles in the thinnest layer of 100 nm (see data presented in 
Table 3) whereas the smallest 2TA coefficient of 2.5 cm/GW was obtained for as-annealed silica 
glass that showed no absorption in the UV-VIS region (data is not shown) [94]. 

 

Table 4. 2PA coefficients             

Glass substrate 
2PA 

coefficient 
(cm/GW) 

 

Silica glass 2.5 

Glass B 5.2 

GIL 49 7.8 

BK 7 16.3 

      Fig.  5.23. A graphical comparison between 2PA coefficients 
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5.5.2.     Discussion 

The enhancement of the nonlinear response of the glass observed after implantation (in the case 
of BK7) and after annealing is caused due to the presence of gold nanoparticles in glass. This is 
because of the phenomenon referred to as surface plasmon resonance (SPR): The electron gas in 
the nanoscale particles is forced to resonate by oscillating electromagnetic field of the laser 
radiation. This results in an enhancement of the local electric field, and thus an increase in the 
optical nonlinear response of the metal nanoparticles implanted in the glasses. This causes an 
increase of several orders of magnitude in optical nonlinear response of metal nanoparticles 
compared to that of the bulk solid one.  

From our data in Table 3 and 4, it becomes evident that the size of the nanoparticles is the most 
relevant factor for the 2PA coefficient. Measurements of the linear absorption spectra also show 
that the characteristic surface plasmon resonance feature is maximal for the largest clusters [95-
99].  

But also the shape and the layer thickness can have a substantial influence. Our results indicate 
that non-spherical nanoparticles in glass BK7 show higher 2PA coefficient than spherical ones in 
glass GIL49 and glass B. If the surface of a metal nanoparticle is rough, the surface plasmons 
(SP) are then strongly scattered leading to the accumulation of the electromagnetic field density 
[100]. This causes an enhancement of the local electric field and thus an increase in polarization. 
This is an indication of a susceptibility enhancement and a strong nonlinear response of the 
nano-composite material. Moreover, our results showed that the composition and structure of the 
used glass has significant impact on the resulting nonlinear optical properties.  

One should notice that the metal nonlinear response is indeed further amplified by the SPR 
phenomenon which depends significantly on the difference of the dielectric constant of 
nanoparticles and the host medium. Therefore, the metal alone cannot explain by itself the high 
nonlinear response of nanocomposite media. Altogether it can be concluded that the substrate 
plays an important role in two different aspects: First, it affects the size, shape and distribution of 
the metal nanoparticles formed in the composite material (which are responsible for the strength 
of nonlinear response of metal nanoparticles) and secondly, as mentioned above, the dielectric 
contrast between the particles and the substrate is responsible for amplification of the local 
electric field, which thus determines the strength of the nonlinear optical response of the metal 
nanoparticles. 

It is, as a conclusion, mentioned that the highest value of 2PA coefficient was found for glass 
BK7, in which the biggest non-spherical gold nanoparticles were developed, under the following 
conditions: Au+ implantation, beam energy of 1701 keV, ion fluence of 1×1016 ion.cm–2, post-
implantation annealing in air at 600 °C for 5 hrs. 
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Chapter 6  

6. Conclusion  
2PA is a nonlinear process in which two-photons are nearly simultaneously absorbed to exit a 
molecule from the ground state to an excited state. The first photon excites the molecule to a 
non-existing virtual state having a life time depending on its difference energy with the nearest 
resonant state. If the second photon arrives in the time interval shorter than the virtual state life 
time, the absorption will complete; otherwise the virtual state will relax to the ground stats. Thus, 
the probability for a molecule to be excited via 2PA is proportional to the light intensity square.     

Intensity dependence of 2PA has made this process as an efficient practical mean for bulk 
material modification. By focusing a pulsed laser beam within a transparent medium a small 
volume of materials around the focal point can be modified via 2PA whereas the rest of the 
medium remains unchanged. This capability allows 3D structuring by implementing two-photon 
induced polymerization (2PIP) technique. In 2PIP the focal point of a tightly focused pulsed 
laser beam is moved within a resin, consisting of a monomer and a two-photon initiator (2PI), 
using a 3D translation stage. Radicals produced by 2PIs via 2PA will trigger the polymerization 
process. After the completion of polymerization the uncured resin is washed away by a solvent 
and the 3D structures stands out.  

Exploiting a 2PI with higher 2PA cross section allows irradiating the materials to the lower 
intensity laser radiation and thus leading to lower risk for damaging the materials. Thus, many 
researchers attempt to synthesize 2PI with higher 2PA cross section. To measure the 2PA cross 
section many techniques have been proposed within which the Z-scan method is the most 
popular one due to its easy-performing and high sensitivity. It also provides determining the 
asbolut measure of nonlinear absorption instead of relative values obtained by other techniques 
like four wave mixing.  In the Z-scan technique a thin nonlinear medium is translated through the 
focal point of a focused pulsed laser beam. The energy transmitted through a small aperture on 
the far field is measured as a function of the sample position. The nonlinear refractive index as 
well as the sign of nonlinearity can be extracted from the CA Z-scan signal. To measure the 
MPA cross section the aperture is removed and the entire energy transmitted through the 
medium is collected for any sample position.  

This work contains three parts: analytical calculation, numerical integration and experimental 
measurements. In analytical part, it was assumed that a thin nonlinear medium is moved along 
the propagation direction of a focused Gaussian beam through the focal plane. The propagation 
of the distorted laser beam through free space and then the intensity distribution on the far field 
aperture plane was calculated utilizing the Gaussian decomposition method.  In this method the 
exiting complex electric field containing the nonlinear phase term is decomposed into a 
summation of Gaussian beam through a Taylor series expansion of the nonlinear phase term. 
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Propagation of each Gaussian beam and then the far field pattern of the beam on the aperture 
plane was calculated employing the Fresnel–Kirchhoff diffraction theory. The far field pattern 
and then the normalized transmittance was derived assuming different nonlinearity in the 
investigated medium as follows 

1- Third order nonlinearity at the absence of 2PA 

2- Third order nonlinearity at the presence of 2PA 

3- Fifth order nonlinearity at the absence of 3PA 

4- Fifth order nonlinearity at the presence of 3PA 

5- Concurrent third and fifth order nonlinearity at the absence of 2PA and 3PA 

6- Concurrent third and fifth order nonlinearity at the presence of 2PA  

All the above calculations were performed assuming a circular Gaussian beam. For the case of 
irradiating a medium with an elliptical Gaussian beam, the far field patterns and then the 
normalized transmittance for the case of a cubic nonlinearity at the absence of 2PA have been 
derived.  

As previously mentioned, if the aperture is removed and the entire energy transmitted through 
the nonlinear medium is collected, the Z-scan signal does not contain any information about the 
nonlinear refraction and only the nonlinear absorption coefficient can be extracted from such an 
OA Z-scan signal. The normalized transmittance assuming different orders of nonlinear 
absorption have been calculated as follows: 

1- 2PA as a third order nonlinear absorption using a circular Gaussian beam 

2- 2PA as a third order nonlinear absorption using an elliptical Gaussian beam 

3- 3PA as a fifth order nonlinear absorption using a circular Gaussian beam 

Calculations show that both the OA and the CA Z-scan signals will deviate out of symmetry 
when the irradiating light beam is assumed elliptical as shown in Fig.  2.19 and Fig.  2.21. In the 
case of an astigmatic light beam the CA Z-scan signal appears as a double peak signal as 
indicated in Fig.  2.20. 

The numerical integrations have been carried out in order to numerically calculate the 
normalized transmittance. Employing MATLAB software made possible calculating the far field 
intensity pattern for any given induced phase change. As seen in Fig.  3.1 and Fig.  3.2, it was 
concluded that when a divergent beam passes through a positive nonlinear medium the far field 
diffraction pattern consists of a central bright spot surrounded by some narrow rings. It also 
concluded that when a convergent laser beam passes through a positive nonlinear medium the far 
field patterns contains some broad rings so that the outer rings are broader. The brightness of the 
center depends on the induced phase shift. If the phase change is an even integer multiple of π 
the center is dark but if the phase change is an odd integer multiple of π the center is bright but 
not as bright as the rings. 
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Our calculation for normalized transmittance showed that the transmittance highly depends on 
the aperture size as the difference between transmittance maxima and minima decreases if the 
aperture sized is increased as shown in Fig.  3.5. Calculation also indicates that the transmittance 
of a self-focusing media for phase distortions much higher than π turns away from the symmetry 
so that the transmittance minimum (valley) is saturated. That is a sigh of this fact that the 
transmitted energy, when a convergent beam passes through a positive nonlinear medium, is 
distributed more in the rings rather than the central spot. In conclusion, despite the analytical 
calculation that allowed to calculate the transmittance only for small aperture size  and small 
phase change the numerical calculation provide the possibility to calculate the transmittance for 
any given aperture size and also for any given phase change. However, the numerical calculation 
results for aperture transmittances up to 2% and induced phase changes up to 1 (Radian)  were 
consistent with the analytical calculation finding.   

Numerical calculation was also performed to calculate the OA Z-scan signals for different order 
of nonlinear absorption such as 2PA, 3PA, 4PA and 5PA. Calculation results clearly manifest 
that the width of the OA signal reduces with increasing the order of nonlinearity. This reveals 
that higher order nonlinear absorptions depend on the light intensity with higher degree.   

Our experimental works were devoted to measure the 2PA and 3PA coefficient or cross section 
of some prepared samples applying OA Z-scan technique. To do these measurements a well 
aligned set up and a well characterized laser beam with known respective parameters such as 
beam waist radius and Rayleigh rang are required. A method was proposed to measure the beam 
waist radius. In this method a small aperture is translated along the propagation direction of the 
laser beam. The aperture transmittance measured as a function of the aperture position contains 
information about the beam waist radius.  

Our samples were comprised of three different categories.  

1. Photo initiators (PI) synthesized in order to utilize in two-photon polymerization (2PP).  

2. Metal glass composite in which gold nanoparticles were implanted. 

3.  Reagent photo grafting materials in order to exploit in multi-photon photo grafting 

Among the synthesized PIs, B3FL showed the highest 2PA cross section value of 443 GM. One 
reason is the excellent coplanarity of the stereo rigid fluorenone carbon frame and the suitably 
strong absorption around 400 nm which ensures the considerable 2PA at 800 nm. 2PP structuring 
tests were also performed to further characterize the new PIs. B3FL exhibited much broader 
ideal processing windows than those of other PIs, which is in good agreement with the Z-scan 
results. 

Among the metal glass composites the highest 2TA coefficient of 16.3 cm/GW was obtained for 
as-annealed BK7 that had developed the largest non-spherical nanoparticles in the thinnest layer 
of 100 nm under the following conditions: Au+ implantation, beam energy of 1701 keV, ion 
fluence of 1×1016 ion.cm–2, post-implantation annealing in air at 600 °C for 5 hrs. The smallest 
2TA coefficient of 2.5 cm/GW was obtained for as-annealed silica glass that showed no 
absorption in the UV-VIS region. 
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A compound with commercial name of (BAC-M) was purchased to utilize as a reagent for photo 
grafting. Using Z-scan technique allowed us first determining the order of nonlinear absorption 
and then measuring the nonlinear absorption cross section. Applying fitting process and 
specifying the extracted Rayleigh length as well as verifying the quality of the fit curves resulted 
to this conclusion that 3PA is the predominant nonlinear absorption process in this compound. 
Then, a 3PA cross section of 4.8×10-78

 (cm6.S2) was determined for BAC-M. Ultimately, 3D 
patterns of immobilized BAC-M molecules were successfully recorded in PEG matrices.  
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MATLAB code for calculating the intensity distribution on the far field plane 

function I = Int ( rho, z, t, fdphi ) 

%   rho [mm] ... radial coordinate for calculation of I [W/m^2] 

%   z [mm] ... z coordinate 

%   t [fs] ... time 

%   fdphi  ... 0 if dphi == 0, 1 else 

%   D [cm] ... distance from the exit plane of the medium to the 

%             far field observation plane 

%   L0 [mm] ... physical length of the sample 

%   Ep [nJ] ... laser pulse energy 

%   alpha0 [1/mm] ... linear absorption coefficient 

%   lambda [nm] ... wavelength 

%   n0 ... 0th order refraction index 

%   tau [fs] ... puls duration 

%   gamma [cm^2/W] ... nonlinear refractive coefficient 

%                     (for 3rd order nonlinearity) 

%   M2 …. Beam quality factor 

%   f ……. Focal length of the focusing lens 

%   w …. Beam radius on the focusing lens 

 

 

global D lam alpha0 L0 Ep tau gamma M2 f w; 

 

%   k ... wave number  

k = 2.*pi./lam; 

%   w0 [micron] ... beam waist radius 

w0=(1e-3.*M2.*lam.*f)./(pi.*w); 

%   z0 ….. Rayleigh rang 

z0 = (k.* w0.^ 2./(2.*M2)); 

Leff=1e-1.*((1-exp(-alpha0.*L0))./alpha0); 

%   wz [micron] ... beam radius at z coordinate
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wz = w0 .* sqrt(1 + z.^ 2./z0.^2); 

% if z is 0, R(z) is infinite. Only calculate R(z) if z ~= 0 

if z ~= 0 

%   R(z) ... radius of curvature of the wave front 

Rz = z .* (1 + z0.^2./z.^2); 

end 

%   r …. Radial coordinate on the   

r = linspace(0,3.*wz,round(wz)./2); 

dr = r(2)-r(1); 

  

% I0 ... on axis intensity at the focus 

I0 = 4 .* sqrt(log(2)/pi) .* Ep./pi./w0.^2./tau; 

  

% delta phi ... phase shift 

if fdphi == 0 

    dphi = 0; 

else 

    dphi = k.*Leff.*gamma.*I0.*1e21; 

    dphi= dphi.* exp(-2.*r.^2./ wz.^2); 

    dphi = dphi./ (1 + z.^2/z0.^2); 

    dphi = dphi.* exp(-4.*log(2.*t.^2./tau.^2); 

   end 

 

% Iint is the Integrand, which is independent of rho 

Iint = -r.^2./ wz.^2; 

% only add the Rz contribution if z~= 0 and this term is not equal to 0

if z ~= 0 

    Iint = Iint - 1i.* k.* r.^2./(2.* Rz); 

end 

Iint = Iint - 1i.* dphi; 

Iint = exp(Iint).*r; 



172 

 

  

  

for m = 1:length(rho) 

    % Isec ... Iint multiplied by the bessel function and integrated 

    Isec = k.*rho(m).*r./D; 

    Isec = besselj(0,Isec).*Iint; 

    Isec = trapz(Isec).*dr; 

    Isec = abs(Isec); 

    % Intensity without the constant factors 

    I(m) = (Isec).^2; 

end 

  

% I prime ... Intensity factor 

Iprim = (4.*pi.^2.*I0)./(lam.*D).^2; 

Iprim = Iprim .* (w0./wz).^2.* exp(-alpha0.*L0); 

 

if t ~= 0 

    Iprim = Iprim.*exp(-4.*log(2).*t.^2./tau.^2); 

end 

  

% total Intensity 

I = I.* Iprim*1e8; 

plot(rho,I); 

end 
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