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From the Series Editor

Application of scientific advances requires the development of new technol-
ogy and hence new devices, but that is not the end of the story. Devices are
used in systems, and these systems are used as commercial products as
instrumentation for testing, evaluation and research. These tools lead to
the next generation of scientific knowledge. An important consideration in
optical systems is the character of the optical beam that passes through that
system to deliver energy, power, or information in an appropriate and effi-
cient manner.

In the early days of optical systems, the main concerns were beam
uniformity and brightness for imaging and interferometry. Energy delivered
on target for focused systems was also a significant consideration. In image-
forming systems, an additional challenge was resolution and image quality.
Apodization became an important tool, e.g., to vary the pupil function of
the system to achieve a particular intensity distribution in the image plane,
and thus control the intensity impulse response of the system (and hence
control the optical transfer function). The next parameters to be controlled
were the spatial and temporal coherence of the beam as produced from
incoherent primary sources.

The availability of a variety of laser sources certainly solved the coher-
ence control issue but led to a new wave of apodization studies to control
both the amplitude impulse response of coherent imaging systems and the
fluctuations in high-energy beam propagation. In addition, the availability
of an ever-increasing array of laser sources led to a large number of non-
imaging application of optical systems such as laser material processing,
cutting and welding; laser surgery; and basic optical physics research.
These system applications as well as modern imaging applications require
the ability to precisely control the amplitude and phase properties of laser
beams.

The discussion of beam shaping in this volume provides the theoretical
basis and techniques for the conditioning of laser beams required for a large
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variety of applications. These are fundamental tools for optical system
design and implementation.

Brian J. Thompson
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Preface

Since the advent of the laser, many applications have required shaping the
laser beam irradiance profile. Several of the primary applications involve
material processing, including welding, cutting, and drilling, and medical
procedures, such as corneal surgery and cosmetic skin treatments. Other
applications include laser/material interaction studies, lithography, semicon-
ductor manufacture, graphic arts, optical data processing, and military uses.
Although the laser beam shaping literature goes back more than twenty-five
years, there is not a dominant or summarizing set of papers. Furthermore,
the information is widely scattered. In our experience, the knowledge of
beam shaping techniques, possibilities, and limitations is thus not well dis-
seminated throughout the engineering community. Many of the primary
users of beam shaping technology are not necessarily optical experts. A
book on beam shaping would thus benefit a wide audience.

The purpose of this book is to present in one volume the salient
aspects of laser beam shaping. The technology involves diffraction theory,
geometrical optics, optical design, and beam profile measurement methods.
It is fundamentally constrained by the principles of electromagnetic theory.
After the Introduction, Chapter 2 presents the underlying electromagnetic
theory and mathematical techniques applicable to beam shaping. The dif-
fraction theory approach and the geometrical optics approach to beam
shaping are two facets of the same problem. Both approaches are funda-
mentally coupled through electromagnetic theory. Chapter 3 presents a
diffraction approach to single-mode Gaussian beam shaping and includes
experimental results. Geometrical optics methods, theory, and application
are treated in Chapter 4. Optimization-based techniques are treated in
Chapter 5. A unique technique for beam shaping using diffractive diffusers
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is introduced in Chapter 6. Multiaperture beam integration systems, includ-
ing experiment and design, are presented in Chapter 7. For completeness,
Chapter 8 discusses the application of geometrical optics methods to
classical (non-laser) shaping problems. Generally, the non-laser problem
differs from the laser ones in that the source is usually highly incoherent
and frequently nondirectional. Chapter 9 discusses current beam profile
measurement technology, an important and necessary part of the shaping
problem. Although the number of laser applications that require beam
shaping is growing beyond the bounds of one book, these chapters give
readers a working understanding of beam shaping techniques. They also
provide insight into the potential application of laser beam profile shaping
in laser system design.

The book is limited, with the exception of Chapter 8, to the treatment,
theory, and practice of shaping laser beam irradiance profiles for a variety of
laser processing applications. There are many application-specific techni-
ques in the field of laser processing, and it is not practicable to try to
cover all variations in one volume. However, the theory, design, measure-
ment technology, and applications treated in this book should provide a
basis for beginning work in the area or the evaluation of proposed systems.
In addition, this book provides extensive references to the literature.

The book is intended primarily for optical engineers, scientists, and
students who have a need to apply laser beam shaping techniques to
improve laser processes. It should be a valuable asset to someone research-
ing, designing, procuring, or assessing the need for beam shaping with
respect to a given application. Due to the broad treatment of theory and
practice in the book, we think it should also appeal to scientists and
engineers in other disciplines.

We would like to express gratitude to the contributing authors, whose
efforts made the book possible. We acknowledge the help of David L.
Shealy, the first author contacted, who provided encouragement as well as
serving as a confidant throughout the work. We give special thanks to our
manager, James A. Wilder, Jr., for championing the project. It was a plea-
sure working with the staff of Marcel Dekker, Inc. We would like to
acknowledge the initial evaluation and acceptance of the book proposal
by the late Graham Garratt. Finally, we express our appreciation to the
very helpful staff, Rita Lazazzaro, Eric Stannard, and Anja Schmidt.

Fred M. Dickey
Scott C. Holswade
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1

Introduction

Scott C. Holswade and Fred M. Dickey
Sandia National Laboratories, Albuquerque, New Mexico

Beam shaping is the process of redistributing the irradiance and phase of a
beam of optical radiation. The beam shape is defined by the irradiance
distribution. The phase of the shaped beam is a major factor in determining
the propagation properties of the beam profile. For example, a reasonably
large beam with a uniform phase front will maintain its shape over a con-
siderable propagation distance. Beam shaping technology can be applied to
both coherent and incoherent beams.

Figure 1 illustrates the general beam shaping problem. A beam is
incident upon an optical system that may consist of one or more elements.
The optical system must operate upon the beam to produce the desired
output. The desired output might only demand a certain irradiance distri-
bution at a target plane, with the phase allowed to vary. This would be the
entire problem for the case of incoherent beams. For coherent beams, the
designer may or may not want to constrain the phase of the beam at the
output plane. For example, if a collimated output beam is desired, the phase
front of the beam exiting the optical system must be uniform. If the design
only requires a certain irradiance distribution at the target plane, however,
the optical system is usually simpler if the phase is left unconstrained.

The essence of the beam shaping problem is illustrated in Fig. 2. In the
figure an input beam of rays, in this case with a Gaussian distribution, is
incident on a plane representing the optical system. The output rays are bent
so as to come to a uniform distribution in the output plane. This is the
Gaussian to flat-top beam shaping problem. A wavefront can be computed
by noting that in the geometrical optics approximation rays are normal to
the wavefront. Once the wavefront is determined one can then determine a
phase function that would produce the shaped beam. Implementing the
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Figure1 General beam shaping problem.

Figure 2 Shaping a Gaussian beam to a uniform beam.

phase function may be a complicated optical design process, and may be
best achieved with multiple optical surfaces (elements).

In fact, the simple process outlined above can give a direct solution to
a beam shaping problem if the phase function can be realized by an optically
thin phase eclement. However, in general, determining the optical phase
element is a complicated problem. Complications arise if the thin element
approximation is not applicable, or if both phase and irradiance profiles are
specified. The ray bending depicted in Fig. 2 is monotonic. Non-monotonic
ray-bending schemes are also possible and some may offer advantage. A
simple example of a non-monotonic system would be a ray-bending scheme
that folds the upper half of the input into the lower half of the output and
conversely. In fact, the bending might have a random component. It may be
easy, if one is not careful, to arrive at bending schemes that are not realiz-
able in that they do not, even approximately, satisfy Maxwell’s equations.
Further, certain ray-bending schemes may fall outside the realm of geo-
metrical optics.
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In addition to the above, what can be obtained for a given beam
shaping problem is limited by physical optics (electromagnetic theory).
The simplest result of this theory is an uncertainty principle that depends
upon input beam size and wavelength, and output profile size and distance.
This result is closely related to diffraction limits on imaging optical
systems.

It is the study of various methods for arriving at the optical system
that is the subject of this book. Only lossless or low-loss shaping techniques
are considered. If large losses are allowed the beam shaping problem
becomes trivial. For example, one can simply truncate a single-mode
Gaussian beam to create a relatively uniform beam profile. As the truncat-
ing aperture becomes smaller, the remaining beam has a more uniform
profile, but at the expense of large power losses in the beam. For most
applications, efficiency requirements generally mandate low-loss systems.
Low-loss beam shaping for laser sources can be broken down into two
basic categories. The first, field mapping, includes methods where the
input profile is redistributed at the target plane, such as the ray-bending
scheme illustrated in Fig. 2. The second, beam integration, includes methods
where the input beam is broken up into components, which assemble at the
target plane to produce the desired profile. Both of these categories are
developed in this book.

I. A BRIEF HISTORY

Beam shaping and its uses have a long history. Classical philosophers were
familiar with burning glasses, and writings on optics survive from
Empedocles (c. 490-430BC) and Euclid (c. 300BC) (1). The earliest
reported use of beam shaping techniques is most likely a legend, but it
merits some discussion. Early Greek and Roman historians reported its
use by Archimedes during the siege of Syracuse from 213 to 211 BC.
According to these reports, Archimedes devised a mirror system that
was used to set fire to Roman ships as they entered the harbor. It is specu-
lated that Archimedes equipped several hundred people with flat pieces of
polished metal which acted as mirrors (2). Figure 3 illustrates this idea.
If correct, this is the first use of multi-faceted beam shaping techniques,
where an incoming beam is broken up into small areas that are directed
onto a common target. This would also be a case of incoherent beam
shaping.

Technically, the use of mirrors to set fire to wooden ships appears
sound. In a modern experiment, 60 sailors holding 5-by-3 foot mirrors
coated with bronze set fire to a wooden boat located about 160 feet away
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Figure 3 Use of multiple mirrors to set ships on fire during the siege of Syracuse,
213-211BC. This is an example of using a multi-faceted, or beam integrating,
technique to shape an incoherent source. (Figure courtesy of Stephen E. Yao).

(3). Under a fairly weak winter sun, the boat began to smoke in seconds, and
flames appeared within two minutes. The objections to the legend of
Archimedes revolve more around the historical record and the difficulty of
making high-quality mirrors in the ancient world (4). First of all, a novel
event such as defeating an enemy fleet by burning should have dominated
contemporary accounts of the siege of Syracuse, but it is not mentioned.
The story is only found in later histories. Second, it would be difficult for
Archimedes to procure large, high-quality mirrors at that time in history,
especially during a war. Mirrors were considered rare and precious until
well into the 16" century. It is likely that this debate will continue for
some time.

The first practical beam shaping optic was the Fresnel lens used in
lighthouses. This lens consists of concentric rings, each of which makes up
part of a simple lens, as shown in Fig. 4. It concentrates the source light

I,/.]a/‘.lt"‘l-}"L—-'.——-\_—g—_r——.r-—J“hr“‘r\I ‘\]

Figure4 Cross section of a Fresnel lens. Each of the concentric rings has the shape
of that part of a simple lens.
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from lighthouses and searchlights into a relatively narrow beam. A simple
lens sized for a lighthouse application would be prohibitively large and
heavy. Instead, each of the concentric elements in the Fresnel lens is ground
and polished separately. The elements are then assembled together to form
the complete lens. For other applications with smaller lens sizes, the Fresnel
element can be molded in one piece. It is interesting to note that Georges-
Louis Leclerc de Buffon (1748) developed the idea of dividing a simple lens
into concentric rings to reduce the weight. Fresnel used this idea in 1820 to
construct lighthouse lenses.

Fresnel lenses for lighthouses are classified into seven classes, or
orders. The distance from the light source to the lens determines the
order. The first-order Fresnel lens, the largest, was installed in the larger
lighthouses operating at seacoasts. Smaller, higher-order Fresnel lenses were
installed in lighthouses that marked features in harbors, such as break-
waters. The Fresnel lens is an example of an incoherent beam shaping
technique.

Modern laser beam shaping obviously had to wait until the arrival of
the laser. The earliest known instance of lossless beam shaping was by
Frieden in 1965 (5). He used geometric methods to determine the curvatures
of aspheric lenses that would reshape a single-mode Gaussian beam into a
beam with a uniform profile.

Il. METRICS FOR BEAM SHAPING SYSTEMS

In general, there are many possible metrics for measuring the performance
of a beam shaping system; in fact, the number is infinite. Only a few, how-
ever, are commonly used. Most others are not used because they are not
analytically tractable. The most common metric is probably the mean (inte-
grated) square difference between the desired and actual beam profile. This
is just the L, norm of functional analysis (6). A linear space admits an
infinity of norms designated as L,. Other examples of metrics are the inte-
grated absolute difference, L;, and the maximum absolute difference, L.
Non-analytical criteria could include ad hoc experimental performance and
“it looks good.” If a metric has an established history for a given applica-
tion, it is best, where practicable, to use the same metric for design and
analysis.

The mean square difference is appealing because it is analytically very
tractable and has an energy or power interpretation. Parseval’s theorem of
Fourier analysis and the Cauchy—Schwarz inequality are examples of power-
ful analytical tools that can be applied to the L, function space. In general, it
is not desirable to have a large integrated energy difference between the
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desired and actual beam shaper output. The integrated absolute difference is
a viable criterion but it is less tractable analytically. It can readily, however,
be employed with numerical techniques. Of the three mathematical criteria
discussed here the absolute difference is the least useful. Two functions could
have a large absolute difference over a small region, with only a small
variation in their mean square difference. Since the mean square difference
relates to the beam’s energy distribution, it more closely follows the para-
meter of interest for most applications. In some situations, it may be impor-
tant to smooth the beam function before applying a metric to analyze the
goodness of the solution. For example, in a material removal application a
fine structure in the beam would not be resolvable by the physical process of
material ablation. In designing such as system, it may be desirable that the
beam’s irradiance averaged over a certain area be flat with respect to some
metric.

The discussion so far has been concerned with the energy or amplitude
of the optical field. In addition, there may be simultaneous constraints of the
error in the phase of the optical field. The phase of the optical field is
generally not important in energy-intensive applications such as material
processing, cutting, and welding. The phase of the shaped beam is likely
to be important in applications involving optical signal processing, inter-
ferometry, holography, and lithography. Any of the metrics discussed above
can be applied to the phase of the shaped beam; however, the energy inter-
pretation of the mean square difference is not associated with the phase of
the optical field.

In describing a physical problem, such as beam shaping, mathemati-
cally, care must be taken that the mathematical description matches what is
desired. For example, a profile with the lowest mean square difference to a
uniform profile may not look the “best’ to the designer who compares it to
other profiles. The following example illustrates this point.

The problem of mapping a single-mode Gaussian beam into a uniform
amplitude and phase beam using a pure phase function is introduced in
Sec. III.B.2 of Chapter 3. For certain system geometries, one obtains a
minimum mean square error solution when the input and output beam
sizes are such that 3 (see Chapters 2 and 3) is fairly small. This solution,
shown in Fig. 5, is limited by diffraction effects. If the output beam size is
allowed to increase, one can get a flatter looking output beam such as shown
in Fig. 6. However the mean square error between this shaped beam and the
desired output is larger than that of Fig. 5. In fact, the mean square error
increases to a maximum with increasing output beam size, even though the
profile continues to look more uniform. In other words, larger output pro-
files may not be what is desired, but they suffer less from diffraction and thus
look better.
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Figure 5 Solution with minimum mean square error to desired uniform profile.
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Figure 6 This solution looks more appealing than the solution of Fig. 5, but it has
a larger mean square error with respect to the desired profile. This is because the
profile is larger than the desired profile.

lll. DISCUSSION OF CHAPTERS

The theoretical underpinnings of laser beam shaping are developed by L. A.
Romero and F. M. Dickey in Chapter 2. After the introduction, the authors
present a review of mathematical techniques appropriate to beam shaping.
The mathematics discussed include Fourier analysis in one and two dimen-
sions, the uncertainty principle and the associated concept of space band-
width product, and the method of stationary phase, which is an important
tool for evaluating diffraction integrals. They then give a review of physical
and geometrical optics theory. The wave equation and flux flow concepts are
developed starting with Maxwell’s equations.
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Geometrical optics is presented beginning with Fermat’s principle
followed by the development of the Eikonal equation. The Eikonal equation
is first obtained as a high-frequency limit of the scalar wave equation and
then the vector form is obtained as a high-frequency limit of Maxwell’s
equations. Fermat’s principle is then revisited as the basis of geometrical
optics. This section is illustrated with eight interesting examples.

The basics of diffraction theory and Fourier optics are reviewed as the
physical optics basis for laser beam shaping. The Fresnel diffraction integral
is derived in an interesting way using Fourier transform theory. The limits of
the validity of the Fresnel approximation are outlined. Although the Fresnel
integral is adequate for most beam shaping problems, vector diffraction
theory is also introduced.

Finally, after the introduction of considerable background material,
the beam shaping problem is addressed. In this chapter the laser beam
shaping problem is treated as the Fourier transform of the product of the
beam function and a phase element (a system consisting of a phase element
and focusing lens); however, the solutions are very general. This can be seen
from the fact that the phase element and focusing lens can be combined to
form one element. Using Fermat’s principle, the authors solve the problem
of transforming a Gaussian beam (single mode) into a flat-top beam with
square or circular cross section. They also outline the solution for more
general distributions.

The chapter culminates in determining the solutions to the same pro-
blems using diffraction theory (Fourier optics). The relation between these
solutions and the solutions obtained using geometrical optics is emphasized.
The major difference is the introduction of a parameter, 3. This parameter,
which is related to the uncertainty principle, is a measure of the potential
goodness of the solution. That is, it is a measure of how well the optics can
map the input beam into the specified output irradiance. The quality of the
mapping increases with increasing (. For sufficiently small 5 no good
solution can be obtained regardless of design method. This is a major
contribution to the beam shaping problem.

Although Chapter 2 may be a little too theoretical for the interest of
some readers, we would like to encourage anyone interested in the book to
at least read the introduction to this chapter. It is a succinct introduction to
the beam shaping problem that discusses general difficulties that can arise.

In Chapter 3, F. M. Dickey and S. C. Holswade reduce the theoretical
solutions of Chapter 2 for circular and square flat-top beams to engineering
designs. After introducing the beam shaping problem as a minimum-mean-
square error problem, they revisit the uncertainty principle and the method
of stationary phase, presenting the uncertainty principle in a slightly differ-
ent form than in Chapter 2.
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They then give the solution to the circular and flat-top shaping pro-
blem as a stationary phase solution to the Fourier optics configuration. Two
solutions, the positive and negative phase solutions, are introduced and the
effects of wavefront curvature are treated in detail. Methods for producing
collimated uniform irradiance beams are described.

The remainder of the chapter includes considerable detail on design
considerations, alignment and scaling errors, and method of design. These
sections include many numerical examples and design data. The chapter
concludes with experimental data from a system designed and fabricated
for use with a CO, laser.

In many cases, the system geometry is such that diffraction effects can
be ignored, and we are in the realm of geometrical techniques. D. L. Shealy
discusses these methods in Chapter 4. One benefit of the approach of
Chapter 4 is that it allows the designer to take a general input shape and
convert it to a general output shape. For example, a Gaussian input beam
could be converted to a uniform profile on the surface of a sphere.

A general theory of the two lens refractive beam profiler is developed
starting with the eikonal and invoking conservation of energy along a ray
bundle between two surfaces. Special attention is given to constant optical
path length designs that give collimated (minimum divergence) outputs. The
result is a differential equation for the lens surfaces. Numerical evaluation
and experimental results are presented. Although the theory is developed for
two lens systems, the theory is basic and amenable to extensions to systems
with more than two elements.

Next, the author develops parallel methods for a two lens system that
uses gradient-index (GRIN) glasses. An advantage of this approach is that it
allows for the replacement of aspherical surfaces obtained in the previous
case with axial-GRIN elements and spherical surfaces. A design example
with numerical evaluation is given. Finally, the author develops the detailed
general equations for one and two element reflective (mirror) systems.

In Chapter 5, N. C. Evans and D. L. Shealy discuss the use of com-
puter-optimization techniques for beam shaping problems, concentrating on
the use of genetic algorithms (GAs). They first introduce three increasingly
difficult beam shaping problems that have been solved using other techni-
ques, in order to judge the effectiveness of optimization-based methods. All
three of these problems involve transforming a Gaussian input beam into a
uniform distribution of some sort. They next describe a computational
method for determining irradiance profiles, which builds upon proven
ray-tracing techniques.

With a computational technique identified for quantifying the efficacy
of a beam shaper, in other words, a merit function, an optimization tech-
nique can now be employed. The authors discuss optimization methods, and
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point out the advantages of simulated annealing and genetic algorithms for
solving problems with discrete parameters, such as glasses from a glass
catalog. They then address the genetic algorithm in some detail. One of
the interesting aspects of optics problems is that the evaluation of the
merit function takes far more time than the optimization steps. The authors
discuss ways to evaluate merit functions for several options in parallel,
greatly speeding up the overall process.

The authors then apply this technique to the problems described earlier.
The genetic algorithm is able to find a satisfactory solution for all three cases
in a significant but reasonable amount of time, since no user input is
required after the problem is started. These examples demonstrate that
optimization-based methods work, although the chosen problems can be
solved in more general ways using analytical methods. With a general ana-
lytical solution, particular cases can be rapidly solved. In addition, analy-
tical methods often offer insight into the beam shaping problem, including
ways to change things to improve the solution. However, one does not have
to go very far before the problem of obtaining an analytical solution
becomes very difficult if not intractable. The most promising applications
of optimization techniques lie in those areas that are analytically difficult,
such as non-symmetric problems. As an example, the conversion of a
Gaussian beam into a uniform beam with a triangular cross-section would
fall into this category. Also, optimization techniques might be useful in
obtaining improved solutions of the type discussed in Chapter 3 for the
case of intermediate 3 values.

In some cases, a multi-mode laser beam may need to be reshaped into
a complex output geometry. In Chapter 6, D. R. Brown discusses a powerful
method for diffusing optical radiation over a well-controlled angular distri-
bution. After discussing the differences of this technique from beam shapers
designed for known input beam profiles, the author covers the grating
theory required to understand the diffuser. He then covers a simple,
illustrative mathematical description of diffuser design. To summarize, the
desired output irradiance is randomized. Then, using a Fourier transform
(far-field) relation between the input and output, the output is inverse trans-
formed. This function is then binarized to give a two-state phase function
that is the basis for the beam shaping element. It is interesting to note that
this approach is similar, in some ways, to phase-only filtering techniques,
which have been given considerable attention in the field of optical pattern
recognition.

The actual method is described through a design example of a simple
system that produces a ring profile. For some applications, the desired
pattern will contain angles that approach the null points of the sinc function
that arises from the finite pixelation of phase in the diffuser. Fabrication of
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these devices involves the tradeoff of the overall diffraction envelope (caused
by the technique’s pixelation of phase) versus the number of phase steps in
the diffuser. An example of an advanced fabrication technique is presented
that eliminates these effects. The author next discusses the speckle in the
output pattern that results from diffusers and methods for its reduction. He
concludes the chapter with a discussion of applications where diffractive
diffusers are particularly appropriate.

High power/energy lasers frequently produce highly irregular multi-
mode beams that are non-stationary in time. A common approach to pro-
ducing uniform irradiance beams in this case is to break up the input beam
into discrete apertures and superimpose the resulting beamlets to get an
average irradiance. This technique is sometimes referred to as beam integra-
tion. D. M. Brown, F. M. Dickey and L. S. Weichman discuss multi-aper-
ture beam integration techniques in Chapter 7.

The authors present optical refractive, reflective, and diffractive con-
figurations for beam integration and discuss the effects of diffraction and
interference. Diffraction effects can be mitigated by increasing system com-
plexity. Interference effects are always present, but will depend on the beam
coherence and may not be resolved in some applications. The authors also
discuss design and fabrication considerations. Finally, they present experi-
mental data and discuss applications of the technique.

Although this book is primarily directed toward laser beam shaping,
D. L. Shealy has contributed a chapter on classical (non-laser) irradiance
mapping techniques. In Chapter 8 he treats the problem of transforming an
input beam (source) profile into an irradiance distribution over a specified
surface. Generally, for non-laser sources, geometrical optics is the approach
of choice for designing irradiance shaping optical systems. The author, as in
Chapter 4, develops geometrical optics methods for the non-laser problem.
Ray tracing and the flux flow equation are combined to obtain a differential
equation for the shaping surfaces. He also develops an approach to the
problem using the energy balance equation presented in Chapter 4.
Finally, the author discusses the application of the theory to the shaping
of radiation from point and Lambertian sources. In addition to the theory
developed in this chapter, the author provides references for those interested
in further pursuit of the subject.

When beam shaping is used in an application, some sort of beam
analysis system is usually required, if for no other reason than to verify
the performance of the beam shaper. Oftentimes, the input beam must be
measured to properly fabricate the shaping optics. In some cases, the ana-
lysis will indicate which form of shaping is appropriate. For example, a
highly multimode beam would not work well with a Gaussian to flat-top
shaping system. A beam integrator would work much better in this case.
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In Chapter 9, C. Roundy provides an introduction to this subject as
well as guidance on the many beam analysis methods available. He begins
with laser beam applications and the need for accurate beam measurement.
He then discusses manual beam measurement methods, and then moves into
mechanical scanning instruments. The treatment of camera-based methods
centers around the many considerations involved in choosing a camera for a
particular application. Next, techniques are discussed for directing a faithful
copy of the laser beam to the camera at an acceptable power or energy level.
Finally, of particular importance to Gaussian beam shaping systems are an
accurate measurement of the incoming beam diameter and a measurement
of the degree to which the actual beam departs from the Gaussian ideal.
Chapter 9 discusses many of the issues surrounding these measurements.

IV. CHOOSING A SHAPING TECHNIQUE

Laser beam shaping techniques group into two basic types: field mappers
and beam integrators. Field mappers work only for beams with a known
field distribution, such as single-mode beams, and they are generally highly
sensitive to alignment and beam dimensions. Integrators work for both
coherent and multimode beams, where the input field distribution may
not be known, and they are much less sensitive to alignment and beam
size. However, interference effects are a problem with integrators, especially
for coherent beams. This categorization into mappers and integrators is
independent of the method, such as diffraction theory or geometrical optics,
used to design the beam shaping optics. Field mapping would include the
diffraction-theory techniques of Chapters 2 and 3, the geometrical techni-
ques of Chapter 4, and the optimization techniques of Chapter 5. The
category of beam integration would include the diffuser approach of
Chapter 6 and the direct beam integration approach of Chapter 7. The
non-laser techniques of Chapter 8 are concerned with incoherent sources,
but they share similarity with field mappers for laser sources.

Like many optical problems, there is no single beam shaping method
that addresses all situations. The nature of the input beam, the system
geometry, and the quality of the desired output beam all affect the choice
of technique. In considering a beam shaping application for single-mode
Gaussian beams, it is first advisable to calculate the parameter
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where A is the wavelength, r, is the radius at the 1 /62 point of the input
beam, y, is half-width of the desired output dimension, and f is the focal
length of the focusing optic, or the working distance from the optical system
to the target plane for systems without a defined focusing optic. For beams
or output spots that don’t have circular symmetry, approximate heights and
widths can be used. As explained in Chapters 2 and 3, this parameter sets
limits on the quality of the solution available. For simple output geometries
such as circles and rectangles, some rules of thumb can be defined: If 5 < 4,
a beam shaping system will not produce acceptable results. For 4 < § < 32,
diffraction effects are significant and should be included in the development
of the beam shaping system. For 3 > 32, diffraction effects should not sig-
nificantly degrade the overall shape of the output beam. However, interfer-
ence effects will still be present from multifaceted or diffusing approaches.
These may or may not be an issue for a particular application. For more
complicated output geometries, 3 may have to be significantly higher to
produce acceptable results. There are no good general rules for these cases.

The particular beam shaping approach depends on the nature of the
input beam and the desired output shape. If the desired output shape is a
complicated, non-symmetric pattern, then the diffuser approach of Chapter
6 is probably a good option. For relatively simple output shapes, such as the
circles, rectangles, and squares used in material processing, there are several
other approaches. Some of these depend on the quality of the input beam. If
the input beam is multimode, with significant irradiance variations across its
profile, then the multi-aperture approach of Chapter 7 is most appropriate.
This approach reduces the effect of input beam variations, but at the expense
of interference effects in the output profile. The multi-aperture approach
also works well when the input beam size changes over time or between
sources. The diffuser approach of Chapter 6 can also work in this situation.

For applications where the input beam has a well-characterized pro-
file, the nature of the output beam can suggest an approach. If the output
pattern must be projected onto a non-planar surface, the geometric techni-
ques of Chapter 4 appear to work well, as long as (3 is sufficiently large. The
geometrical approach also works well for producing a shaped beam that
propagates with the desired profile, rather than just a shaped profile at a
particular plane.

Oftentimes, the input beam is single-mode with a Gaussian profile, and
the desired output profile is either circular or rectangular. In these cases, the
diffraction-based technique of Chapter 3 works particularly well. This tech-
nique produces an output profile free of interference effects. The profile
degradation due to diffraction is also predicted by the solution, and the
technique suggests ways to reduce this degradation to an acceptable level.
Finally, the solution is known and can be casily scaled to any situation.
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As long as the input profile is known, the optimization techniques of
Chapter 5 have the potential to work well for a number of desired output
patterns or beams, including non-symmetric profiles. These techniques also
have the advantage of a minimum of mathematical development to arrive at
a solution. In addition, the basic algorithms, once implemented, would
remain the same for designing additional output patterns.

V. FURTHER INFORMATION

Laser beams, particularly single-mode Gaussian beams, are often resized for
particular applications. This resizing can be different in the two axes of the
beam profile. Thus, circular beams can be made elliptical, or elliptical beams
further modified. Cylindrical telescopes or prism pairs can be used for such
transformations. These elementary techniques are sometimes termed laser
beam shaping, but they are not discussed in this book. Several textbooks
discuss them in more detail (7,8). Laser beam shaping, in the sense of
transforming a Gaussian beam profile to a uniform profile, is briefly
reviewed by O’Shea (7). The authors do not know of another comprehensive
treatment of this subject.

In this book we have tried to give a broad treatment of the beam
shaping problem that would provide the reader with the background to
develop solutions to specific problems, evaluate various techniques, and
conduct research in the field. We have also presented solutions to problems
of general interest. However, it is difficult to present or cite all relevant work
that might interest a given reader with a specific application in mind. For
example, iterative approaches such as the Gerchberg—Saxton algorithm (9)
are not treated in this book, and techniques for super-Gaussian and flat-
tened Gaussian beam expansions are touched upon only slightly. Also, there
are many papers in the literature that address a specific implementation,
such as a particular material or geometry. For this reason we have included
at the end of this chapter a bibliography of beam shaping papers. Some of
these papers are cited in the chapters; many are not. Three books that touch
upon aspects of material processing and beam shaping are also included.
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The Mathematical and Physical
Theory of Lossless Beam Shaping

Louis A. Romero and Fred M. Dickey
Sandia National Laboratories, Albuquerque, New Mexico

I. INTRODUCTION

In this chapter we will present the basic mathematics and physics that are
required to understand the theory of lossless beam shaping. Figure 1 is a
diagram of the physical situation that we are concerned with. We assume
that a parallel beam of coherent light enters an aperture at the plane z = 0.
At the aperture the light gets refracted by a combination of a Fourier trans-
form lens with focal length f, and a beam shaping lens. We are interested in
the irradiance of the beam at the focal plane z = f. The separation of the
refractive elements at the aperture into a Fourier transform lens and a beam
shaping lens is convenient for our analysis, and sometimes convenient in
practice, but it should be emphasized that these two lenses could in fact be
combined into a single lens.

The beam shaping problem is concerned with how to choose the beam
shaping lens so that we can transform a beam with an initial irradiance
distribution at the plane z = 0 into a beam with a desired irradiance dis-
tribution at the focal plane z = f. We assume that the beam shaping lens is
lossless. This means that it does not absorb or block out any of the energy of
the incoming beam. If we assume that the laws of geometrical optics apply,
it is possible to transform any initial distribution into any desired output
distribution, provided only that the total energy of the incoming and out-
going beams are the same. When we include the effects of diffraction it is in
general not possible to accomplish our goal exactly.

One of the major themes of this chapter is to determine the scaling
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Figure1 This is a schematic of the basic beam shaping system. A parallel beam of
light enters the aperture where it encounters a Fourier transform lens, and then the
beam shaping element. We would like to choose the beam shaping element so that
the output at the focal plane has the desired intensity distribution.

properties of beam shaping systems (what happens when we make our
system bigger or smaller, or change the wavelength?). In particular we
want to know when the laws of geometrical optics can successfully be
applied to designing our system. Due to our emphasis on scaling, we choose
to write many of our functions in terms of dimensionless coordinates. For
example, if the incoming beam has a radially symmetric Gaussian irradiance
distribution many authors would write the irradiance distribution as

1(r) = g(r), (1a)
where
g(r) = IR (1b)

Here the parameter R determines the basic scale of the irradiance
distribution. In this chapter, we would prefer to write this irradiance dis-
tribution as

I(r) = g(r/R), (2a)
where
g€)=c*. (2b)

It might appear simpler to say that the initial irradiance is given by
g(r), rather than saying it is given by g(r/R). However, when we consider
the scaling properties, the second form is much more powerful. In particu-
lar, if we say that the initial distribution is given by g(r/R), then it will be
much clearer how to apply the analysis of a system with distribution g(r/R,)
to a system with distribution g(r/R5).

This approach is motivated by the practice commonly used in fluid
mechanics of writing equations in dimensionless form (1, 2). This approach
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in fluid mechanics allows one to show that different physical systems will
have the same behavior provided only that certain “‘dimensionless para-
meters” are the same. For example, when fluid flows past a sphere, the
behavior of the flow depends on the Reynolds number

_ RG 3)

v
where R is the radius of the sphere, U is the velocity far from the sphere,
and v is the kinematic viscosity. If two flows have the same Reynolds num-
ber, then the patterns of fluid flow will be identical, after rescaling our
coordinates. However, if the Reynolds numbers are different, then the
flow patterns can look dramatically different. For example, in one case
the flow may be turbulent, and in the other case not.

Ideas similar to these can be applied to the theory of beam shaping.
Suppose our initial irradiance distribution is given by g(x/R, y/R), and that
our desired output irradiance distribution is given by Q(x/D,y/D). The
parameter R gives the characteristic length of the incoming beam, and D
is the characteristic length of the output beam. If the wavelength of the light
is A, and we are imaging our output at a distance f/ from the aperture, then
the dimensionless parameter

27RD
M

is very important to understanding beam shaping. In particular, suppose
that we design a lens that solves the beam shaping problem in the geo-
metrical optics limit, and now we analyze how this lens works when the
wavelength is finite. We will see that the irradiance distributions of two
beam shaping systems will be geometrically similar, provided only that
they have the same shape functions g(s, ), and Q(s,¢), and provided the
parameters (3 for the two systems are the same. This means that we can
transform the irradiance distribution of one system into the irradiance dis-
tribution of the other system by merely rescaling our axes. In particular, one
system will suffer from diffraction effects if and only if the other system (with
identical () also does.

Geometrical optics is a short wavelength approximation, so it is clear
that we would like  to be large in order for geometrical optics to hold. We
will see that if 3 is large it is relatively simple to do beam shaping, but if it is
small, the uncertainty principle of signal analysis shows that it is essentially
impossible.

Another important feature in determining the difficulty of a beam
shaping problem is the continuity of the beam shaping lens. If the surface
of the element designed using geometrical optics is infinitely differentiable,

Re

8=

4)
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then we will not need a very high value of 3 in order to achieve good results.
To be more precise, the effects of diffraction will die down like 1/ 3% as 3 gets
to be large. However, if the lens has a discontinuity in its third derivative,
the effects of diffraction will die down like 1/4/3 in parts of the image plane,
and hence we will need a much larger value of § in order to approach the
geometrical optics limit. If the lens has discontinutities in the first or second
derivatives, we will need to use even larger values of § before we can ignore
the effects of diffraction.

If the input beam is smooth (such as Gaussian), then the continuity
properties of the lens designed using geometrical optics are controlled by the
continuity of the desired output beam. If one has a good understanding of
geometrical beam shaping, it is not too difficult too see how the continuity
of the desired output beam will affect the continuity of the lens. However, if
one is not familiar with this theory, the results can be somewhat surprising.
For example, Fig. 2 shows examples of three desired output beams. One
might naively think that all of these beams have abrupt discontinuities in
them, so they may all lead to equally difficult beam shaping problems. It
turns out, however, that the output in Fig. 2a will lead to an infinitely
differentiable lens, the beam in Fig. 2b leads to a lens with a discontinuity
in the second derivative, and the lens required to produce Fig. 2¢ will have
a discontinuity in the first derivative. The outputs 2a, 2b, and 2¢ get pro-
gressively harder to achieve.
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Figure2 Three examples of desired output distributions. The outputs (a), (b), and
(c) get progressively harder to achieve when diffraction effects are taken into account.
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This whole chapter is devoted to understanding the points we have
just discussed. We feel that it is worth writing them down as succintly as
possible.

e In the geometrical optics approximation it is possible to turn a
beam with a given initial distribution into a beam with any desired
output distribution, provided only that the total energy of the
input and output beams are the same.
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e Diffraction effects make it impossible to do beam shaping exactly
when we take into account the finite wavelength of light. For given
shapes of the input and output beams, the parameter
0 =27RD/)\f determines the difficulty of the beam shaping
problem. If 3 is large, then the laws of geometrical optics will be
a good approximation.

e If the surface of the element designed using geometrical optics has
discontinuities in its first, second, or third derivatives, then we will
need higher values of § in order for geometrical optics to be a good
approximation.

In Sec. II we discuss some mathematical prerequisites for understand-
ing the theory of beam shaping. After a brief summary of the basics of
Fourier transforms, we prove the uncertainty theorem from signal analysis.
In Sec. VII) this theorem will be used to show why it is impossible to do
a good job of beam shaping when 3 is small. Section II also includes a
discussion of how to use the Hankel transform in order to obtain radially
symmetric Fourier transforms. This is important when analyzing the effects
of diffraction on radially symmetric problems.

In Sec. III we outline the theory of stationary phase, with an emphasis
on how discontinuities in the higher derivatives of the phase function can
slow down the convergence. In Sec. VIII we use the method of stationary
phase in order to obtain the large 3 approximation to the diffractive theory
of beam shaping. We will see that the first term in the stationary phase
approximation is equivalent to the geometrical optics approximation. We
also use the method of stationary phase in Sec. V in order to analyze the
errors introduced by making the Fresnel approximation.

Sections IV-VI discuss the electromagnetic theory necessary to under-
stand beam shaping. Section IV presents a review of Maxwell’s equations,
Sec. V discusses the geometrical optics limit with an emphasis on Fermat’s
principle, and Sec. VI discusses the theory of Fresnel diffraction. Fresnel
diffraction theory allows us to turn the physical problem of beam shaping
into a mathematical problem involving Fourier transforms.

In Secs. VII and VIII we bring all of our tools together and discuss the
theory of beam shaping. Section VII gives the theory of beam shaping in the
geometrical optics limit, and Sec. VIII discusses the theory of beam shaping
with diffraction effects taken into account. When the diffractive equations
for beam shaping are written in dimensionless form, the importance of the
parameter 3 will become evident. We will use the method of stationary
phase to analyze the large § limit of the equations. The fact that our
geometrical optics solution is based on a stationarity condition (Fermat’s
principle), and our large 3 approximation is also based on a stationarity
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condition (stationary phase), causes these two analyses to look almost
identical. We end Sec. VIII by giving some examples that illustrate the
principles concerning the importance of (3, and the smoothness of the
shape of the lens.

II. MATHEMATICAL PRELIMINARIES
A. Basic Fourier Analysis

The theory of Fresnel diffraction will allow us to write our beam shaping
problem as a problem in Fourier analysis. For this reason it is impossible to
understand our theoretical treatment of beam shaping if one is not familiar
with some of the basic concepts from Fourier analysis. In later sections we
will use both one- and two-dimensional Fourier analysis.

There are several definitions of the Fourier transform used in the
literature. The differences are very minor, concerning only the sign of the
complex exponential, and the constant in front of the integral. However,
these differences can be annoying when one is using a table of Fourier
transforms, or applying theorems such as Parseval’s equalilty. The definition
we use here is probably the most commonly used (3, 4).

Definition 1 The Fourier transform of a function f(x) is defined as

Flw) = Tf(x) = joc F(x)e = d. (5)

—00

An almost identical definition holds for two-dimensional functions.

Definition 2 The Fourier transform of a function f(x,y) is defined as
Floww) = T = || flepge = axa. (©
—00 J —00

The following are some well-known theorems in Fourier analysis that
we will use throughout this chapter.

Theorem 1 One-dimensional Fourier Inversion Theorem—If F(w) is the
Fourier transform of f(x), then

fx) =T "(F(w)) ! rc F(w)e™™ dw. (7)

:% .
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Theorem 2 Two-dimensional Fourier Inversion Theorem—If F(wy,w,) is the
Fourier transform of f(x,y), then

1 o0 (o) X :
f(x,y) —_ 7! (F(wx, wy)) _ 4_77-2J J F(wx, wy)el(wxerwm) dw, dwy.

o ®)

Theorem 3 One-dimensional Parseval’s Equality—A function f(x) and its
Fourier transform F(w) satisfy

{o¢]

| reras=2n " rwpPax 9)

—00 —00

Theorem 4 Two-dimensional Parseval’s Equality—A function f(x,y) and its
Fourier transform F(w,,w,) satisfy

Jm Jm \F(wx,wy)lzdwxdwy:47r2r ro |/ (x, )| dx dy. (10)

—00 J—00 —00 J—00

Theorem 5 The One-dimensional Fourier Convolution Theorem—Suppose
F(w) and G(w) are the Fourier transforms of the functions f(x) and g(x).
The inverse Fourier transform of F(w)G(w) is given by

T (F)G(w)) = r’ F(©)glx— 6 de. (1)

—00

Theorem 6 The Two-dimensional Fourier Convolution Theorem—Suppose
F(wy,w,) and G(wy,w,) are the Fourier transforms of the functions f(x,y)
and g(x,y). The inverse Fourier transform of F(wy,w,)G(wy,w,) is given by

00

T (F(wy, ) Glwr,w,)) = j FEmex— 6y —nydedn.  (12)

—00

Theorem 7  Transforms of derivatives—The Fourier transform of the deriva-
tive is given by

T(f{) = WF(w). (13)

X

Theorem 8 Transforms of partial derivatives—The Fourier transform of the
partial derivatives are given by
oF
T<8_f> = iw F(wy,w)) (14)

X
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and

T(?ﬁ) = i, F(wy,w,). (15)

Although the Cauchy—Schwartz inequality is not really a theorem in
Fourier analysis, we will need it in our proof of the uncertainty principle,
and hence now state it.

Theorem 9 The Cauchy—Schwartz Inequality (for infinite integrals)—For
any function f(x) and g(x) we must have

2 00

<[ rwPa | jerar (16)

—00

Hm F(0g(x) dx

—00

The two sides are equal if and only if there is a constant A\ such that

J(x) = Ag(x).

B. The Uncertainty Principle and the Space Bandwidth
Product

In this section we discuss the space bandwidth product, and the uncertainty
principle of signal analysis (5). This discussion is crucial to understanding
the theory of beam shaping. As we shall see in later sections, in a beam
shaping system, the space bandwidth product is related to the parameter 3
discussed in the introduction. In Sec. VIII we will use the the uncertainty
principle to show that it is impossible to do a good job of beam shaping if 3
is small.

The Heisenberg uncertainty principle of quantum mechanics (6) states
that the product of the uncertainty in position times the uncertainty in
momentum must be greater than //27:

h
ApAx > ——. 1
pAx > (17)

In order to make this precise we must define precisely what we mean by Ax
and Ap. This principle was one of Heisenberg’s basic assumptions in his
development of matrix mechanics. However, it can also be derived by
assuming the wave mechanics of Schroedinger. The derivation of the result
depends on the fact that the wave function for momentum is the Fourier
transform of the wave function for position, and on the subject of this
section, the uncertainty principle from Fourier analysis.

All of our derivations will be limited to one-dimensional functions and
their transforms, but almost identical derivations apply for two-dimensional
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transforms. Once we have derived the one-dimensional results, we will state
the two-dimensional results without proof. We now define the uncertainty in
f(x) and F(w).

Definition 3 The uncertainty in f(x) and its transform F(w) are given by

jm () d

|” e

and

Joo P IF(w)] dw
Ap= |l . (19)
J_ |F(w)|* dw

The uncertainty principle concerns the product of these two quantities,
and is simply related to the space bandwidth product.

Definition 4 The space bandwith product of a function f(x) is defined as
space bandwith product = Ay Ap. (20)

It should be noted that the space bandwidth product of a function does not
depend on the scaling of the function.

Lemma 1 For any nonzero constant a, and nonzero real number b, the space
bandwidth product of af (bx) is the same as the space bandwidth product of

f(x).
We are now ready to state the uncertainty principle of signal analysis.

Theorem 10 The One-dimensional Uncertainty Principle—For any square
integrable function f(x) the space bandwidth product must be greater than
1/2. In other words,

Ay Ap>1/2. (21)
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Proof: The Cauchy—Schwartz inequality implies that

J, (xf) d_{c dx| < ) ‘xz\f(x)\z de ‘d_{c dx. (22)
Clearly

00 _d 2 00 _d 2

Jioo(x ) d_{c dx| > |Re Jioo (xf) d_{c dx (23)

We can write

Re[ v La=3[ x(f a7 df)dxz—lr S0P dx.

dx 2 ) dx dx 2 ) _»
(24)
The inequalities (22) and (23) now imply
1 %) 2 00 50 -2
i | reraed <[ et ‘% dx. (25)

Since the Fourier transform of df/dx is iwF(w), Parseval’s equality
implies that

| .[&
oo | dx

The inequality (25) can now be written as
|| verae
4

—00

2 oo
dyx = J WP F ()| dw. (26)
2w

—00

2 e’} 00
< %J_m ()] de W F(w)]* dw. (27)

—0Q

Using Parseval’s equality we can write this as

13| PG| IrePar

g%jm x2|f<x>|2dxj PP dw. (28)

—00 —00

If we now divide both sides of this inequality by the left-hand side we
arrive at the desired result. QED

Lemma 2 We have Ay Ap = 1/2 iff the function f(x) is a real Gaussian,
f(x) = Ae™ ™" where a is a real number.

Proof: 1In order to get an equality in the uncertainty relation we must
have an equality in the Cauchy Schwartz inequality in (22). This implies that
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df Jdx = —2x\f, and hence f(x) = A It is also necessary that we get
an equality in (23). This will be the case iff f(df /dx) is real, which will be
true iff A is real. QED

Although the space bandwidth product can never be less than 1/2,
there is no limitation to how big it can be. For example, the function
f(x) =™ has an infinite space bandwidth product.

Suppose we change the phase of the function f(x) by multiplying it
by the phase function ). How should we choose the phase ¢ so that
the function f (x)eiq(x) has a minimum space bandwidth product? Note
that the phase function does not change the uncertainty in x, but it does
change the uncertainty in w. This question has implications for the depth of
field of a laser beam shaping system. The following theorem gives a very
simple answer to this question.

Theorem 11  The function q(x) that minimizes the space bandwidth product
of f(x)e"™) is the one that makes the phase of f(x)e“™) constant.

Proof: The only integral in the space bandwidth product that
changes with the function ¢(x) is the integral

| weepa. (29)
—00
where G(w) is the Fourier transform of f (x)e ). Let f(x)e'"™ =
A(x)e™™ | where A(x) is a positive real function. Parseval’s equality, and
the formula for the Fourier transform of a derivative, show that

2

Jm W G(w)[]* dw = 2m J: ‘;x (A(x)e )| dx. (30)

—00

This last integral can be written as

27{; ((%)2+A2(x)<‘;—x>2)dx>2wjl (i—j)zdx. (31)

This clearly implies that this integral, and hence the space bandwidth product
is minimized by choosing the function  so that it is constant. QED

This theorem will be used in Chapter 3 (Sec. III) of this book when
discussing the collimation of beams.
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We now summarize how these results apply for two-dimensional func-
tions. In two dimensions, the uncertainty will be defined as

j“ jm (2 492/ (x )P ddy

(Af)ZZ —= o?o %) ) (32)
J |/ (x,3)|? dx dy
. J J (wi+w§)|F(wx,wy)\2dwxdw),,
(Ap) = e e . (33)
J J |F(wy, w},)|2 dw, dw,

The space bandwidth product is once again defined as A, Ap. The
two-dimensional uncertainty principle gives

Theorem 12 The Two-dimensional Uncertainty Principle—For any square
integrable function f(x,y) the space bandwidth product must be greater than 1.
In other words,

A Ap> 1. (34)

C. Separation of Variables in Cylindrical Coordinates

When you take the Fourier transform of a function f(x, y) that has radial
symmetry, you end up with a Fourier transform F(w,,w,) that has radial
symmetry in the Fourier domain. That is, if we can write

S(x, ) =g(r), (35)
where r = /x> + )7, then we can write
Flw,,w,) = G(a), (36)

where o = {/w? + w?. The transformation that takes the function g(r) into
the function G(«) is known as a Hankel transform (4). This transform
allows us to find the two dimensional Fourier transform of a radially sym-
metric function by performing a one-dimensional integral. The Hankel
transform can be very useful when analyzing diffraction effects in beam
shaping problems with radial symmetry.

In order to understand Hankel transforms it is necessary to be familiar
with an identity in the theory of Bessel functions. In order to understand this
identity we begin by considering the reduced wave equation in polar co-
ordinates:

1 16
v2p+1\%p:—2 o +—@+k2p=0. (37)
r or or r
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If we assume solutions of the form

p(r,¢) = f(r)e™, (38)
we find that the function f(r) must satisfy
1d [ df o

If g(r) is a solution to

1d /[ dg m’g B

then f(r) = g(kr) is a solution to Eq. (39).

The equation (40) is known as Bessel’s equation. The solutions that are
regular at r = 0 are called Bessel functions. They are written as J,,(r). If we
were interested in the waves emitted from a circular cylinder, we would not
require that the solution was finite at » = 0, but that as r — oo the solution
represented only outgoing waves. In this case we would use the solution
to Bessel’s equation H,,(kr). This is known as the Hankel function of the
first kind. Our goal is to understand the Hankel transform as a circularly
symmetric Fourier transform. For this purpose we only need the regular
solutions to Bessel’s equation, which means we only need to consider the
function J,(kr) where n is an integer.

One of the most elegant ways of approaching the theory of Bessel
functions (7) is through the use of an integral identity, which we will now
derive. This identity allows us to derive almost all of the most commonly
known properties of Bessel functions such as their asymptotic behavior for
large indices, asymptotic behavior for large argument, recursion formulas,
and the behavior near the origin. This identity is almost the only property of
Bessel functions that we will need in order to understand the Hankel trans-
form.

The integral identity can be derived by considering the function

F(x,y) = e™. (41)
This clearly satisfies the two-dimensional reduced wave equation
V?F+F =0. (42)

We can express this in terms of polar coordinates, and then expand the
function in a Fourier series. If we do this we find that

o0

eir cos(d) _ Z ak(r)eikﬁ' (43)

k=—00
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From our discussion at the begining of the section we know that this
last infinite sum will satisfy the reduced wave equation if the functions a; (r)
satisfy Bessel’s equation. Due to the rotational symmetry of the reduced
wave equation, it can be shown that in order for this infinite sum to satisfy
the reduced wave equation it is necessary that each individual term satisfy
the reduced wave equation. This means that it is necessary (not just suffi-
cient) that the functions a;(r) satisfy Bessel’s equation. It is also clear that
they must be bounded at r = 0. It follows that they are multiples of the
Bessel functions Ji.(r). We will in fact define the Bessel functions so that the
multiplicative factor is unity. This gives us the result

o0

eir cos(d) _ Z Jk(r)eike. (44)

k=—00

Using the fact that the right-hand side is the Fourier expansion of the

function ¢ > we arrive at the identity
(™ :
7. - i(r cos(6)—kb) d6. 45
=5 e (45)

D. Hankel Transforms
The Fourier transform of f(x,y) can be written as
Flowe) = || ey aray (46)

Suppose we write both the original function f(x,y) and the Fourier
transform in terms of polar coordinates:

(x,) = r(cos(8),sin(0)), (47)
(wy,wy) = afcos(e),sin¢)). (48)
The Fourier transform can be written as

Fla,¢) = J:O JW OO L (1, 0)r dr df. (49)

-7

If the function f(x,y) is independent of 6, then the transform F(«, ¢) will be
independent of ¢. It follows that we can write

Fla) = J

0

o0

J e "0 £ (r)r dr do. (50)
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If we perform the integral with respect to 6 first, and use the integral
representation of J;,, we get

o0

Fla) = 27TJ Jo(ar) f(r)rdr. (51)
0

The function F(«) is known as the Hankel transform of the function
f(r). We can apply the same steps to show that the inverse Hankel trans-
form is given by

f(r) = f Jo(kr)F(K)k dk. (52)

Illl. THE METHOD OF STATIONARY PHASE
A. The Basic Idea of Stationary Phase

The method of stationary phase (8) is an asymptotic method, first used
by Stokes and Kelvin, for evaluating integrals whose integrands have a
very rapidly varying phase. The method is very important in the theory of
dispersive wave propagation where it motivates the concept of group
velocity (9,10). In the theory of beam shaping it can be used to derive
the geometrical optics limit from the theory of Fresnel diffraction, and
more importantly, it gives us bounds on when the geometrical theory is
applicable.

We will now give a brief heuristic derivation of the lowest-order term
in the approximation. Suppose we have an integral of the form

HE) = [ s ag (53)
and we are interested in evaluating this integral for large values of ~.
Intuitively we expect that intervals where the function y¢(€) is changing
rapidly will give neglibible contributions to this integral. If the derivative
of ¢ vanishes at £ = &), we expect the main contribution to come from the
region very near &,. To a first approximation we can write

H(7) = f (&) 1) JOO o CE 2 g (54)

We have arrived at this expression by assuming that the major con-
tribution comes from a small region around &,, and hence we have approxi-
mated the function f(£) as being constant, and equal to f(&,). We have also
expanded the function ¢(§) in a Taylor series about &, keeping only the
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terms up to the quadratic. The integral can now be evaluated analytically to

give
H(~) ~ /4 iva(&) | 2T 55
where
d'(§) )
L= sgn . (56)
( d£2 o

Here we have assumed that there is exactly one point where the phase is
stationary. If there is more than one point, then we must sum over all points
that are stationary in order to get our asymptotic expansion. If there are no
stationary points, then the integral will die down exponentially fast with ~
provided the functions ¢(&§) and f(§) are infinitely differentiable, and the
function f(§) and all of its derivatives decay as |[¢| — co. If there is no
stationary point, but the function f(§) has a discontinuity in it, we are at
least guaranteed that the integral dies down like 1/ as v — oo. It is not too
difficult to make this heuristic derivation more rigorous.

B. The Rate of Convergence of the Method of Stationary
Phase

In our discussion of beam shaping we will see that the lowest-order term in
the stationary phase approximation to the diffraction integral gives us the
geometrical optics approximation. In this case the parameter § discussed in
the introduction will serve as our large parameter in the phase of the inte-
grand. In order to understand what sorts of errors are produced when we
use the geometrical optics approximation, we need to understand the higher-
order terms in the method of stationary phase. It is not important for us to
have exact expressions for the higher-order terms, but we need to know how
fast they die down with ~.

The subject of how to correct the lowest-order term in the method of
stationary phase gets somewhat technical, so we feel that it is best if we
begin by summarizing the main results. In our analysis of beam shaping we
will have another parameter in our phase function, so our integrals will be of
the form

H(x,7) = ro D (6 dt. (57)

—00

Here the parameter £ represents a point on the aperture, and x represents a
point at the focal plane. The function ¢(§, x) will be proportional to the

Copyright © 2000 Marcel Dekker, Inc.



travel time required to get from a point £ on the aperture to a point x in
physical space. In practice £ and x will be two-dimensional vectors, but we
assume they are scalars here in order to simplify the presentation. This one-
dimensional case will be directly relevent for the case where our input and
output beams can be written as a direct product of two one-dimensional
distributions.

Let &)(x) be the point at which the phase is stationary. We will show
that if the functions ¢(& x) and f(§) are infinitely differentiable at the
stationary point £y(x), and

&q(&,x)
e |,

0

#0, (58)

then the next order correction dies down like 1/7°/>

sion of the form

A(x)  iB(x)

72

. This gives us an expres-

S (59)

In this case the relative error between the first-order term and the exact
solution will die down like 1/~. If the function f'(¢) is real, then the functions
A(x) and B(x) will have the same phase. This implies that the relative error
between | H (x,~)|* and the value predicted by the first term in the method of
stationary phase will be O(1/4%).

This expression will remain valid provided the functions f(§) and
8%q/0¢* are differentiable at & (x). If these functions are continuous, but
not differentiable at some point x*, then at the point x*, the next order term
in the method will be of the form
A(x*) | B(x¥)

+

H(x* ) =
(x*,7) i 5

T (60)

We see that in this case the relative error between the first order-term and
the exact solution will die down like 1/71/ 2. Furthermore, in this case the
functions A4(x) and B(x) are not phase shifted by 90° when f'(£) is real. This
means that the relative error between |H(x,~)|* and the term predicted by
the first term in the method of stationary phase will be O(1/,/7). This means
that we will need a much larger value of ~ before the first-order term is a
good approximation. In terms of our beam shaping problem this will imply
that if the surface of the beam shaping lens designed using geometrical
optics has a discontinuity in the third derivative, then we will require
much larger values of 3 in order for the results of geometrical optics to
be a good approximation.
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Suppose that at some point x,, the function (&) or 8*q/0¢> is dis-
continuous at &y(xg). Since the first-order term in the method of stationary
phase requires us to know /(&) and 8*¢(¢, x)/0¢ at &(x), it is clear that we
need to modify the results of the lowest-order term in our stationary phase
approximation when x = x;. More importantly, the method of stationary
phase will hold for values of x near x(, but the convergence near these points
will be dramatically affected. The analysis of this situation is based on the
Fresnel integral (11), and we see that this situation is related to the diffrac-
tion by an semi-infinite half plane. As with that case, we end up getting
oscillations near the point xy. For the beam shaping problem, this implies
that if the surface of the lens designed using geometrical optics has a dis-
continuity in the second derivative, then we will get even worse convergence,
and this will be accompanied by oscillations in the amplitude. When the
surface of the lens has a discontinuity in the first derivative, the convergence
towards the geometrical optics limit is affected even more dramatically.

Clearly, if the discontinuities are small enough, they will have little
effect on the convergence towards the geometrical optics limit. For example,
the elements are often manufactured by approximating the element by a
piecewise constant element. This should not be any problem if the steps
are small enough.

So far we have assumed that the second derivative of ¢(¢, x) does not
vanish at the stationary point & (x). In optics, points where this condition is
violated are said to lie on a caustic surface. Suppose we have a point source
of light whose rays get refracted by an inhomogeneous medium. It is pos-
sible that at certain points in the medium we might have more than one ray
arriving from this point source, or possibly none at all. The surfaces separ-
ating regions where there are different numbers of rays are known as the
caustic surfaces. When we analyze the diffraction integral using the method
of stationary phase we find that on the caustic surface the second derivative
of ¢(&, x) vanishes.

We are not so much interested in computing the integral for H(x,~)
right at a point where the stationary point &, has a vanishing second deri-
vative. Instead, we are interested in analysing the integral H(x,~), for x near
xo where

2
A (GL) qé§;x°) ~0. (61)
< §=&o(x0)
In optics, the point x;, would be a point on the caustic surface. We would
find that for points on one side of x,, there are no stationary points, and on
the other side there are two stationary points. In order to understand the
behavior of H(x,~) near such points we need to include cubic terms in the
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Taylor series expansion of the phase near the stationary point, and this
analysis is based on the Airy integral.

We will not give any further discussion of the Airy integral or caustics
since when discussing beam shaping we do not present any examples where
caustics occur in the classical sense of the word. All of the problems we
analyze lead to lenses whose phase functions do not have inflection points.
However, in some of the lenses, the phase function grows linearly as we
move far away from the center of aperture. This results in a situation where
the caustic occurs at a value of &, = oc.

C. A Preliminary Transformation

In our analysis of the higher-order terms in the method of stationary phase
we will begin by analyzing the situation where ¢(¢§) = ¢%. This leads us to
consider integrals of the form

szrf@M&- (62)

—00

By making a preliminary transformation, we can transform the analysis of
the integral in Eq. (53):

HE) = [ e e (63)
—00
into the analysis of this simpler problem. In order to do this we assume that
q(¢) has a single stationary point at &,. In this case we can introduce a new
variable s such that

s* = u(q(€) — a(&)), (64)
[ = sgn (d Z,(g[])>. (65)

in the neighborhood of §,. Making the change of variables s(§) =
w(q(&) — q(&)), we end up with an integral of the form

- o, d
() = [ (et O s (66)
This gives us an integral of the same form as (62), but with the function
dg§
_ as 67
¢ = /() (67

replacing the function f(¢).
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When we apply the method of stationary phase to the integral (62) we
see that there is a stationary point at £ = 0. The continuity properties of f(£)
are important in determining how quickly the first-order term in the method
of stationary phase converges towards the exact answer. For the general
case it is important to know the continuity properties of the function g(s). A
discontinuity in the kth derivative of g(s) can arise by the kth derivative of
f (&) being discontinuous at & = &, or by the kt/ derivative of d¢/ds being
discontinuous at s = 0. The derivatives of £(s) depend on the derivatives
with respect to £ of ¢(&) at &. These derivatives can be calculated using
implicit differentiation. In particular, note that

ds dg

28 — = p —. 68

SaE M e (68)

If we evaluate this at £ = &, we find that both sides of this equation vanish,

and we have not determined any derivatives. However, if we differentiate
once more with respect to £ we get

ds \? d*s d*q
2 = 25 — = 1 —> 69
(%) > @@ )
and when we evaluate this at £ = &, we get
ds(&@)\ _  d’q(&)
2 = . 70

This gives us two possible values of ds(&,)/dé. We can choose either sign we
want to. When we take further derivatives we find that the (d*/d¢*)s(&,) is
determined by the derivatives of ¢(£) up to k+ 1. This means that the
(d* /ds*)£(0) is also determined by these same derivatives. Finally we see
that the derivatives of g(s) up to k will be continuous only if the derivatives
of ¢ up to k + 2 are continuous. In particular, we see that the function g(s)
will have a continuous first derivative if and only if the derivative of f(£) and
the third derivative of ¢(§) are both continuous.

D. Generalized Functions

Before discussing the higher-order terms in the method of stationary phase
we consider some relevant concepts from the theory of generalized functions
(12). The Dirac delta function and its derivatives are examples of generalized
functions. The definition of these functions often arise as infinite integrals
whose integrands do not decay at infinity. For example the delta function is
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the inverse Fourier transform of a constant, and hence is defined by a
divergent integral.

8(x) : JOC e dw. (71)

T 2n

—00

One way of thinking of this function izs to imagine that it is defined by taking
the inverse Fourier transform of ¢, and then letting o — 0. The function
that we get by doing this is the Dirac delta function. Even though it is a
rather unusual function, it is extremely useful in practice.

In finding the higher-order terms for the method of stationary phase it
will be useful to consider the integrals

00 2
Ri) = | b (72)
These integrals can be confusing since if «y is real then the integrands of these
integrals do not approach zero as £ — co. However, if we evaluate these
integrals over a finite interval, and let the region of integration go to infinity,
we find that these are in fact convergent integrals. Furthermore, if we give ~y
a very small positive imaginary part, then the integrands approach zero.
After evaluating these integrals we could then let the imaginary part go to
zero. When we let the imaginary part go to zero we find that all of the
integrals R;, are well defined. We could also get the integrals by taking the
derivatives of the integral Ry(~y) with respect to 7. If we do this we find that

Ria = =i . (73)
Due to the asymmetry of the integrand we get

R, =0 for k odd. (74)
Carrying out this process we find that the first few of these integrals are
given by

Ry(7) = . (75)

v

Ri(7) =0, (76)

R =50 (77)
where

Co =™ /7. (78)
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We will also be concerned with the integrals
S = | ¢ ae (79)
0

We can use the same sorts of reasoning on these integrals. If k is even then

1
Si(v) = ERk(’Y) for k even. (80)
However, unlike R, these integrals do not vanish when & is odd. In parti-

cular, when k =1

Si(7)

i

=5 (81)

The rest of the integrals can be evaluated using

Siga(y) = —i a% Si(7)- (82)

E. Higher Order Terms in the Method of Stationary
Phase

We begin our analysis of the higher-order terms in the method of stationary
phase by considering the special case

)= | e ae (83)
—00

This has the stationary point at £ = 0. To obtain the first term in the method
of stationary phase we argued that the major contribution to this integral
came from the region around £ = 0. For this reason we expanded f(£) in a
Taylor series about £ = 0, and then kept only the first term in the series. It
makes sense that we should get more accurate answers if we keep more
terms in the Taylor series. For example, if we kept three terms in the
Taylor series this would lead to an approximation of the form

@ (0) 1.4°/(0)

2 g

H) ~[OR() + g

Ri(v) +

Rofy) 4+ (34)

where R, () are the integrals that we discussed in the previous section. We
conclude that the higher-order approximations for H(vy) can be written as

. o0,
H(y) ~ em/4\/§ (f(O) + % d Zlg))) + (85)
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In this special case, this shows that the next order term in the method
of stationary phase dies down like 1/4%/2 provided f(¢) is sufficiently differ-
entiable.

If the derivative of f(£) has a discontinuity at £ = 0, then if we keep
two terms in our Taylor series about £ = 0, we end up with an expression

d d e
1)~ 1O R) + L0 [ a4 LOI [ oeac.
(86)
We can write this as
d d
() ~ O R) + 5100 L = LT ) (87)
Using our values of R, and S; we get

We see that if /(£) has a discontinuous derivative at £ = 0, then the relative
error between the first-order term and the exact answer will die down like
1 /71/ 2. This is much slower than when the derivative of f(£) is continuous.

As we noted earlier, the general case where ¢(&) is not quadratic can
be transformed into the quadratic case, but replacing the function f(§) by
the function g(s) in Eq. (67). We saw that the function g(s) will have a
discontinuous derivative if the function f(£) has a discontinous derivative,
or if g(§) has a discontinuous third derivative. It follows that as long as the
first derivative of f (&) and the third derivative of ¢(§) are continuous, then
the next order term in the method of stationary phase will die down like
1/4*/2. 1f either of these derivatives are discontinuous, then the next order
term will die down like 1/4. This can be used to justify our earlier state-
ment concerning the effect of a discontinuity in the third derivative of
the lens surface on the rate of convergence towards the geometrical optics
limit.

F. Lower-Order Discontinuities in the Phase Functions

When the functions f(£) or (d*/d&*)q(€,x) are discontinuous, we can get
very slow convergence from the first term in the stationary phase approx-
imation. We will begin with a simple example illustrating this point. By
suitably changing coordinates, more general problems can in fact be related
to this simple example.
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Consider the integral

_ L[ ey
X,y) =— . 89
Vi) == | e e (59)
This is a special case of our general problem where ¢(&, x) has a quadratic
dependence on ¢ and where () =1 for £ > 0 and 0 for £ < 0. This is an
example where the function f(£) is discontinuous.

If we apply the method of stationary phase to this integral we see that
there is no stationary point for x < 0, and that the method predicts that the
integral is independent of x for x > 0. More specifically the method predicts

V(x,v) ~ 0 for x <0, (90)

Vix,v) ~ \/i ¢™* for x > 0. (91)

In the stationary phase approximation, the magnitude of V(x,v) is a
multiple of the Heavyside function.

1V (x,7)|* ~ 0 for x < 0, (92)
V(x, 2%lforx>0. 93
K v

We now consider this integral in more detail. A simple change of
variables allows us to write

1
V(erY) = W Fr(_x71/2)7 (94)
where
1 (> -
FI‘(S) = \/—_J é’” dt (95)
7T S

The function Fr(s) is known as a complex Fresnel integral. Figure 3
shows a plot of the intensity |Fr(s)|* of the function Fr(s). This graph shows
that for x < 0 the function V(x,7) has a monotonic decay towards zero
while for x > 0 we get an oscillatory approach towards the constant value of
1. We see that if |x,/y] > 1, then V(x,v) will agree very well with the
stationary phase solution. The difference between the exact solution and
the stationary phase solution is that the stationary phase solution approxi-
mates the lower limit of the integrand as being equal to —oo. Since v > 1,
this is usually a good approximation, but when x is close to zero, this is not
so good. This is the root of the slow convergence of the method of stationary
phase for all problems that have a discontinuity in f(&) or dzq/dgz.
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Figure 3 A plot of the function |Fr(x)|* that models the intensity when light gets
diffracted by a plane.

We can understand the behavior of Fr(s) by considering the behavior
of Fr(s) for large values of |s|. For s > 0 we can integrate by parts to show

that
Fr(s) = —— ¢ L4 L ro “ (96)
Voomo 25 m), 2it
This shows that
Fr(s) = —— ¢ =4 0(1/5) (97)
5) = NG e 5 .
Similarly for s < 0 we can write
. 1 S .2
Fr(s) = ™4 — ﬁjﬂc e dt. (98)

An integration by parts now shows that

Fr(s) = ¢™* — \/L%

When we compute the amplitude |Fr(s)|* we see that

e 5, o /7). (99)

1
\Fr(s)\2:m+---fors>> 0, (100)
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and
IFr(s)| = (1 - Sm(s;%”) for 5 < 0. (101)

We see that the solution approaches its asymptotic value much slower for
s < 0 than for s > 0, and that it approaches it in an oscillatory fashion.
This is only the asymptotic behavior, but it gives quite an accurate picture of
the function Fr(s).

This shows that the function V(x,~) will have oscillations for x > 0,
and be smooth for x < 0. Note that the convergence for large values of ~
will be very slow if x is near 0, since x,/7 will be relatively small in this case
as vy — oo.

A very slight generalization of this problem is to consider the function

0
10 gy 1 g J 0= g, (102)

oo

o0

V(x>7) = J
0
This reduces to the previous problem when o = 0. When « is non-zero we
can analyze this problem in a similar fashion. In this case we see that we will
get oscillations on both sides of x = 0, but the oscillations will be bigger on
the side where the stationary phase solutions predicts that V' is bigger.
Generalizing further we see that when we have an integral of the form

Hex) = | g ag (103)
and f(¢) has a discontinuity at £*, then we need to break the integral up into
two parts.

5*
i) = [ e dg+ [ e ae (104)

Suppose that the function ¢(x,£) has a stationary point at £(x), and that
&(x*) = &*. When we apply the reasoning behind the method of stationary
phase to the integral from £* to oo we get

JOO o wf(f) dE ~ eI Y))f(f( ) JOC 2L q(x8(x))/dE) (=€) de.

5*
(105)
We now make the substitution
1 d*q(x,¢
£ =3 T - g (106)
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This gives us the approximation

J " (6) d S (E() v Fr(s®),
* \/,y /2‘ dq(x () ‘
de
(107)
where

d*q(x,§(x))

§* = (f* - f(@) dfz

v/2 (108)

If s* <« 0, we can make the approximation
F(s*) = Fr(—o0) = ¢/*, (109)

and we get back the first term in the method of stationary phase. However, if
&(x) is too close to &*, this will not be a very good approximation unless + is
extremely large. However, our results should be good if we keep s* in our
expression rather replacing it by —oo. This is exactly what we did in our
analysis of the integral in Eq. (89).

As in our analysis of Eq. (89), we can patch up our approximation for
points x such that £(x) = £* by using the Fresnel integral. If we were to do
this in the general case, the formulas would get extremely cumbersome.
However, it is clear that in this general case we will get the same qualitative
behavior as in Eq. (89).

G. The Method of Stationary Phase in Higher
Dimensions

The method of stationary phase carries over to higher-dimensional integrals.
In particular, suppose we have an integral of the form

o) = || remee agay (110)
Once again if the function ¢(£,n) has a stationary point where

VQ(§07770) :07 (111)

then the major contribution to the integral will come from points right
around this stationary point, and we can approximate the integral by

H(7) %f(foyno)eivq(émo)J J €i1/27Q(§'n)d€d’l7, (112)
—00

—00
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where

(&,

06 = 1™ (¢ o
O q(&. &q(&,

+2 TS (g ) + TIEM) G (113

This integral can be evaluated to give
2mi ;
H(~) ~ 17’1(507'70), 114
O e e
where

T ) = 4G m) Fql&m) P q(m) Fql&: ) (115)

o¢? o aEn a€ on

IV. MAXWELLS EQUATIONS
A. Maxwell’s Equations

The theory of beam shaping is based on diffraction theory, which is itself
based on electromagnetic field theory. For this reason we will now review
basic eletromagnetic theory (13). The governing equations of eletromagnetic
field theory are

1 0B
E4+-—= 116
V x +cat 0, (116a)
10E 4n
B--—=—1L 116b
VX ¢ Ot c ( )
and
V - E = 47p, (117a)
V-B=0. (117b)

In these equations E and B are the electric and magnetic fields, and p
and J are the charge and current densities. The densities p and J are related
to each other through the law of conservation of charge.

T 4+V-J=0. (118)

The first of Egs. (116) is the differential form of Faraday’s principle of
electromagnetic induction. The second equation describes both Ampere’s
law and Maxwell’s displacement current. The first of equations (117) is
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known as Gauss’s law, and the second equation describes the fact that there
is no such thing as a magnetic monopole. It should be noted that the second
set of Maxwell’s equations almost follows from the first set. If we take the
divergence of each of the equations in (116), use the fact that the divergence
of a curl is zero, and use the law of conservation of charge, we get

%V-Bzo, (119)
and

0

E(V~E*47rp):0. (120)

We see that if the second set of Maxwell’s equations is true initially, then the
first set requires that they be true for all time.

We are frequently concerned with wave propagation through some
medium such as air, water, or glass. In this case there is an interaction
between the charge distributions and the electromagnetic field. This inter-
action is usually taken into account by assuming that the electric field
induces a polarization charge P such that the charge density is given by

p=-V-P. (121)

Assuming that there are no other charges other than those induced by the
electric field this gives us the equation

V- (E+47P) = 0. (122)
The assumption is typically made that the polarization is given by

P = yE. (123)
Gauss’s law can now be written as

V-D =0, (124a)
where

D =¢E, (124b)
and

e=1+4my. (124c)

The linearity between the polarization and the electric field is usually
valid unless the electric field gets to be very large. Here we have also
assumed that the medium is isotropic, so there are no preferred directions.
In a non-isotropic medium, the polarization is related to the applied electric
field by a symmetric second rank tensor. In order to describe the phenomo-
non of birefringence in crystals it is necessary to use the general tensor form
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for the polarization (this tensor is diagonal for the special case of an iso-
tropic medium). This relation between the electric field and the polarization
also assumes that the polarization depends only on the local value of the
electric field. Using such a theory it is not possible to describe the rotation of
the polarization field by an optically active material.

A similar approximation is used to take into account the effect of
currents that are produced by the magnetic field. In this case the currents
in the material induce a polarization current M such that the current is
given by

Jy=cV xM. (125)
It follows that the magnetic field must satisfy

VxB—la—E:47rV><M. (126)
c Ot

If we introduce the quantity H defined by
H =B — 47M, (127)

then assuming the only currents are those arising from the induced current
Jyr, We can write
1 OE
VxH--—=0. 128
c Ot (128)
In the simplest case it is assumed that the fields B and H are linearly propor-
tional to each other

B = ;H. (129)

For most materials that are used in optics the linear relation between the B
and H fields is totally satisfactory. In fact, the constant y is very nearly equal
to unity for most materials of optical interest.

We now collect the macroscopic form of Maxwell’s equations in a
linear isotropic material:

1 0D
S~ VxH=0, (130a)
1 0B

il E=0. 1
o PVXE=0 (130b)
V.D=0, (131a)
V-B=0. (131b)

Copyright © 2000 Marcel Dekker, Inc.



where
D = ¢E, (132a)
B = uH. (132b)

We have omitted any sources of charges and currents other than those
produced by the interaction of the fields with the materials.

B. The Wave Equation

Our analysis of diffraction effects in Sec. VI is based on the fact that in a
linear, homogeneous, and isotropic medium, each component of the electric
and magnetic fields satisfies the wave equation. We now give a derivation of
this fact. We begin by deriving an equation for E that does not assume that e
and p are constants.

To begin with we write the second of Egs. (130) as

10H 1

-—+—-VxE=0. 133

¢ Ot + I (133)
We now take the curl of this equation, and use the first of Eqgs. (130) to
arrive at the result

OE 1 1
—2=—c2—V><<—V><E>. (134)
ot € 1

This is the form of the wave equation for E in a medium where € and y are
not assumed to be constant. If we assume that u is constant, we can write
this equation as

O’E , 1

—=—c — E. 135
T c ” V x V x (135)
We can simplify this equation by using the identity V x V x A =

—V?A 4+ VV - A, along with the fact that V-E =0 (assuming that ¢ is
constant). For a homogeneous medium this gives us the equation

82E C2 2
— =—V’E. 136
or  eu v (136)

This shows that each component of the electric field satisfies the wave
equation. If the fields are time harmonic, with frequency w, the spatial
dependence of the electric field must satisfy

K*E + V*E = 0, (137)
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where
=2k (138)
¢
We refer to this equation as the reduced wave equation, or the
Helmholtz equation.

Similar arguements show that the field H satisfies

2
8—1;12—621V><(1V><H>. (139)
or 1 €

Note that this is not quite the same as Eq. (134) for E since we have put €
inside the curl and p outside the curl. However, if  and e are constant, we
once again arrive at the conclusion that each component of H (and hence B)
will satisfy the scalar wave equation.

C. The Energy Flux

We will now derive an expression for the flux of energy in an electromag-
netic field. If we dot the first of Egs. (130) with respect to E, and the second
equation with respect to H, and add the results, we get the equation

%%(E-D+B-H)—E-V><H+H~V><E:O. (140)
c

If we use the identity

V- (AxB)=B-VxA—-A-VxB. (141)
We see that

1 0

——(E-D+B-H -(ExH)=0. 142
25 (E-D+B-H)+ V- (ExH) (142)
When put in integral form this equation can be written as

iJ (E-D+B-H)dV:—J (ExH) -ndS, (143)
2c Vv S

where n is the outward facing normal to the surface. This equation can be
interpreted as the fact that the quantity 1/2¢(E-D + B - H) is the energy
density, and E xH 1is the flux of energy. The interpretation of
1/2¢(E-D+B-H) as the energy density of the field is actually clearer
when we include charges in Maxwell’s equations. In this case we would
have to add a term to these equations that would represent the change in
kinetic energy of the particles in the system. The vector

S=cExH, (144)

is referred to as the Poynting vector.
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We will use the Poynting vector to justify the fact that the rays in
geometrical optics are in fact the direction that energy is begin transported.

V. GEOMETRICAL OPTICS
A. Fermat’s Principle

In order to understand our discussion of beam shaping it is essential to
know how to use the laws of geometrical optics. Although understanding
the derivation of the basic principles clearly leads to a deeper understanding,
this is not essential for our presentation. For this reason we begin by stating
the basic principles, and showing how we will use them. Once this is done,
we will discuss the derivation of the principles.

Our treatment of geometrical optics is based on Fermat’s principle
(11). Fermat’s principle is often stated as saying that the ray that gets
from a point a to a point b will take the path that minimizes the travel
time. This is a very concise statement of the principle, but it is not techni-
cally correct. Rather than saying that the true path minimizes the travel
time, we need to say that the true path is stationary with respect to travel
time. In many situations, the travel time is in fact minimized, but it is not
always the case.

Before discussing what stationarity means in geometrical optics, we
will clarify what we mean by stationarity in a simpler setting. The function
F(x,y) = (x — x0)* + (v — »o)* has a minimum at (x, y) = (x,, o). A neces-
sary condition that it has a minimum at (x, yo) is that the partial derivatives
of F vanish at (x, yy). The vanishing of the partial derivatives is equivalent
to saying that the function F(x,y) is stationary at (xq, yy). Another way of
putting this is to say that if we take any numbers (%, ), then

F(xo + €X,y0 + €9) = F(xq, ) + 0(62) as e — 0. (145)

At a point that is not stationary we would have F(xy+ €X,yq + €) =
F(xg,¥0) + O(e) as e — 0. In order for a function to have a minimum at
(x0,»0) it must be stationary, but stationarity does not imply that the func-
tion is a minimum. For example, the function

F(x,y) = —x* =) (146)
is stationary at (0,0), but it has a maximum rather than a minimum. The
function

F(x,y) = x* =) (147)

is stationary at (0,0), but it has neither a minimum nor a maximum.
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Returning to geometrical optics, we will parametrize curves going
from point a to b by a parameter s such that 0 <s< 1. Let x(s) =
(x(s),»(s),z(s)) be a curve such that x(0) =a and x(1) = b, then we will
denote the travel time along this curve as

T(x(s)) = travel time. (148)

Suppose that x,(s) is the true path that a light ray takes to get from a to b.
The stationarity condition implies that for any functions X(s) such that
x(0) =x(1) =0,

T (xo(s) + €X(s5)) = T(x(5)) + O(*). (149)

Fermat’s principle applies in an enormous variety of situations. Many times
we put constraints on the travel paths. For example we can use Fermat’s
principle to show that the angle of incidence equals the angles of reflection
for a light ray bouncing off of a mirror. In this case we use the constraint
that a ray goes from point a to b after first touching a surface.

If a light ray gets from point a to point b by first passing through an
intermediate point ¢, it can be shown that the paths from a to ¢ and from ¢
to b must each be stationary.

We will now give some concrete examples illustrating Fermat’s prin-
ciple. The first few examples that we give are not directly relevant to the
beam shaping problem, but the last example is absolutely essential to under-
standing our discussion of beam shaping.

Example 1 Suppose we have a medium that has a constant speed of light.
For a ray to get from a point a to a point b in the least amount of time it is
clear that it must travel in a straight line. Since the travel path to get from a
to b is a minimum, it is clear that it is also stationary. It can be shown that in
this case, straight lines are the only stationary paths.

Example 2 Suppose the plane z = 0 separates medium 7/ with a velocity of
¢; from medium 7 with velocity ¢;;. What path does a light ray take to get
from a point a in medium / to a point b in medium //. From our last
example we already know that the path must be a straight line in each
medium. For simplicity we will assume that the light ray travels in the
plane y = 0. Suppose that a = (x;,0,z;), and b = (x,,0,z,). Suppose that
in going from a to b the ray goes through ¢ = (£,0,0) on the interface
between the two media. We do not know the value of ¢ ahead of time,
but it can be determined using Fermat’s principle. The total travel time to
get from a to b by going through ¢ is

T(e) :%\/m —£>2+z%+$ Jen—eP+ 2. (150)
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In order for the travel time to be stationary, we must have
dT
—=0. 151
e (1s1)
This implies that

sin(6;) _ sin(6;;)

. e (152)
where
sin(9,) = ——o =M (153)
(x1 — &)’ + 2}
sin(60y) = ——2—¢ (154)

(2 _5)2 +Z%.

This is equivalent to Snell’s law of refraction.

Example 3 Suppose we would like to design a mirror that focuses all of the
light rays coming from a point a to a point b. For simplicity we will consider
this problem to take place in two dimensions. We also assume that the speed
of light is constant throughout our medium. Suppose a ray comes from a at
an angle of 6 with the horizontal. Suppose that this ray bounces off the
mirror at a point p(6), and then goes to the point b. Let 7'() be the travel
time to get from a to p(6) and then to b. In order for Fermat’s principle to
hold we must have

dT

do
This means that if q; is any point on the mirror, then the distance from a to
q, plus the distance from q; to b must be the same as for any other point q,
on the mirror. This implies that the mirror must in fact have the shape of an
ellipse, with foci at a and b.

It should be noted that as we move the point a off to oo, this ellipse
ends up turning into a parabola. This gives us the solution of how to focus
rays coming in from oo to a single point b.

0. (155)

Example 4 When using Fermat’s principle for parallel beams of light it is
necessary to be familiar with the following argument. Suppose we have a
parallel beam of rays coming in from oco. We can think of such rays as
coming from a very distant point source. Suppose the point source is at
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p = (—L,0,0). Assuming a homogeneous medium, the time to get from p to
a point (x,y,z) is given by

1
T(x,y,z):;\/(x+L)2+y2+22. (156)
As L — oo we can make the approximation
1
T(x,3,2) = (L+x+0(1/L). (157)

This shows that the travel time to get to any point in space (x,y,z) is
independent of y and z. When applying Fermat’s principle, the travel time
L/c will not matter since it is the same for all paths. We will use this fact
whenever we are applying Fermat’s principle to rays that are coming in
parallel.

Example 5 We now give an example that shows that the ray paths do not
always minimize the travel time, but they are still stationary with respect to
travel time. Suppose we have a cylindrical mirror (see Fig. 4) whose surface
is given by

(x,y) = R(cos(h),sin(0)) — 7/2 < 0 < 7/2. (158)

We are interested in finding the paths of rays that are coming in parallel
from x = —oco. As we have already mentioned, this can be thought of as rays
coming from a distant source at p = (—L,0) where L is very large. The
travel time to get from p to a point on the surface of the mirror
R(cos(6),sin(#)), and then to a point (x,y) is (assuming L > 1)

! (L + Rcos(6) + \/(x — Rcos(0))* + (y — Rsin(0))?).  (159)

c

T(0)

Figure 4 A schematic of light being reflected by a circular mirror. In the shaded
region, there are two rays that reach each point by a single reflection off of the
mirror. Outside of this region, there is only one ray that reaches each point by a
single reflection.
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Given a point (x,y) the equation d7/df = 0 will determine where the ray
that reaches (x,y) reflects off the mirror. For simplicity we will limit our-
selves to points such that y = 0. In this case we can write the stationarity
condition as

T’ _ Rsin(9) (—1+ al ) (160)

do ¢ \/(x — Rcos(6))* + R%sin’(6)
This equation has the solutions

sin(d) =0, (161)
or

x* = (x — Rcos(0))* + R*sin’(0). (162)
This last equation can be written as

x— WIZ(@ (163)

For any value of x the first of these equations gives us the solution § = 0.
However, the second equation will have no solutions if x < R/2, and will
have two solutions if x > R/2. When we look throughout the xy plane we
find that there will be a region that has three reflected rays reaching each
point, and another region with only one reflected ray reaching each point.
The curve separating the two regions is an example of a caustic surface.
These caustic surfaces are easily observed since the irradiance at the surface
becomes much larger than at a typical point in the plane. This particular
situation can be observed when looking into a cup of tea, or a bowl of sugar
under the light from a concentrated source such as an incandescent light
bulb.

Note that not all of the rays have minimum travel time. If we compute
d*T/d6* we get

T _Reos(O) (| =
de? ¢ ( \/ (x — Rcos(6))” + R?sin’(0) )
3 R*sin’(0) X
¢ ((x—=Rcos(0)* + R*sin’(9))**

(164)

If we restrict our attention to the ray that hits the mirror at § = 0, we have

d*T(0) R X
= (—1 + |xR>. (165)
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This shows that if x > R/2, then the travel time is a minimum, but if
X < R/2 the travel time is in fact a local maximum.

Example 6 This last example plays a large role in our theory of beam
shaping since it shows that our Fourier transform lens has a quadratic
time delay, and hence a quadratic phase function. Suppose we would like
to place a lens at x = 0 that focuses all of the rays coming in from x = —co
to a single point at (x,y) = (f,0). We will make several approximations. To
begin with, we assume that the lens is thin. This means that the rays that
enter the lens at (0, y) emerge at very nearly the same point. We can model
the effect of the lens by saying that it introduces a time delay of #; (y). This
means that a ray that enters the lens at (0, y) takes a time #; (0, y) to emerge
from the lens. In practice this time delay can be introduced by making the
lens out of a material that has a different index of refraction than
the medium that the rays are traveling in, and by varying the thickness of
the lens.

We would like to determine the function ¢; (y) such that all of the rays
from oo get focused to the point (f,0). The time for a ray to go from a
distant point (—L,0) to a point (0, y) and then to the point (f',0) is approxi-
mately

(0) = L (L+ VT + 1,00, (166)

Here we have made the approximation that L > 1, and used the simplified
expression for the distance from (—L,0) to (0,y). We will now make the
paraxial approximation. This assumes that all points on the lens satisfy
y?/f* < 1. In this case we can approximate the square root using

2
\/f2+y2%f+2y7- (167)

Using this approximation, we can write
2

t(y) z% <L +f+;f> +1.(»). (168)

Fermat’s principle requires that the path that gets from (—L,0) to
(f,0) must be stationary with respect to all nearby paths. This implies that

dt

& =0 for all . (169)
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This means that we must have #(y) = constant, and hence
(170)

This shows that in the paraxial approximation, we must use a quadratic lens
in order to focus an initially parallel beam of rays to a point.

B. The Eikonol Equation

The laws of geometrical optics can be derived as a high-frequency approxi-
mation to the solutions of Maxwell’s equations. The rays of light are related
to the direction of energy propagation. There is a very strong connection
between Fermat’s principle and the method of stationary phase. Both the
method of stationary phase and the laws of geometrical optics are high
frequency limits, they both are centered about the phase of the wave field,
and they both use a stationarity condition.

Before considering the high-frequency limit of Maxwell’s equations,
we will begin by considering the high-frequency limit of the scalar wave
equation. Suppose we have a solution p(x,w) to the equation

2
*(x)

This is the time harmonic wave equation, also known as the reduced wave
equation. We are interested in determining the behavior of these solutions
for large values of w. In particular we ask what solutions that are coming
from a single point source look like. The theory of Green’s functions shows
that the general high-frequency limit (not necessarily from a point source)
can be built up by integrating over many such point sources. If the velocity
is constant we know that the point source solutions can be written as

Vzp +

p=0. (171)

eiwr/c

plx,w) = 4 (172)

P
Here r* = x* + > + 22, This solution has a very rapidly varying phase (it
varies more rapidly the bigger w is), and a slowly varying amplitude (that is
independent of w). In the case of variable ¢(x) we assume that even though
the amplitude may not be completely independent of w, it depends very
weakly on w. Generalizing to the case of non-homogeneous media, in the
high-frequency limit we will assume that p(x,w) can be written as

p(x,w) = A(x)e. (173)
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This is only the first term in an asymptotic expansion. The general solution
needs to include corrections to the amplitude that depend on w.
We can write

Vp = (VA + AiwVe)e™. (174)
Using this we can now write

Vp =V -Vp=(V?A+2uwVA -V + iwdAV?¢p — AV - V)e™?.
(175)

If we substitute this expression into Eq. (171) and keep only the highest-
order term in w, we find that

Vol = L 176
Vol ) (176)

This equation is usually referred to as the eikonol equation. The next
higher-order term gives us

2VA-Vo+ AV =0. (177)
This last equation can be written as
V- (4°V¢) = 0. (178)

The fact that this equation can be written in divergence form suggests
that the quantity 4°V¢ is the flux of some quantity that is conserved. When
we apply these arguments to optical systems we will see that this quantity is
in fact proportional to the flux of energy.

We mentioned that the general high-frequency approximation can be
built up by integrating or summing over a family of point sources. As a
simple example, if our wave field comes from two point sources, the high-
frequency limit of the wave field will look like

p(x,w) = A1 (x)e™1™ 4 4, (x)e?), (179)

It should be mentioned that even for a single point source there may be
points in space where the high-frequency limit consists of a sum of terms as
in the previous equation. This will be the case if the rays are bent so that
more than one ray from the same source reaches the same point. The sur-
faces separating the regions where there are different numbers of rays are the
caustic surfaces.
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C. The Eikonol Equation and Maxwell’s Equations

In the previous section we derived the eikonol equation from the scalar wave
equation. Each component of the eletromagnetic wave field satisfies this
equation, so it is not surprising that the eikonol equation also arises when
considering the high-frequency limit of Maxwell’s equations. In this section
we will derive the eikonol equation using Maxwell’s equations, and we will
see that Poynting’s theorem shows that the energy of the electromagnetic
field is in fact being propagated normal to the surfaces of constant phase.
The derivation of the eikonol equation from Maxwell’s equations is almost
identical to the analysis of plane monochromatic plane waves given in most
textbooks on electrodynamics (12).
The time-harmonic Maxwell’s equations are

1

iwc—D—VxH:O7 (180a)
0

iwlBJerE:O, (180b)
€o

where
D = ¢(x)E, (181a)
B = u(x)H. (181b)

Similar to our derivation of the eikonol equation for the scalar wave
equation, we assume a solution of the form.

E(x,w) = Ey(x)e“/, (182)
H(x,w) = Hy(x)e™™), (183)
Substituting this expression into Maxwell’s equations and using the vector
identity
V x (f(x)A(x)) =f(x)V x A(x) + A(x) x Vf(x), (184)
we get
iwciEO— (V x Hy + iwH, x V) =0, (185a)
0
iwCﬂHOJr(vXEOHwEOxw):o. (185b)
0
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If we only keep the highest-order terms in w in this equation we get

CiE0 —H, x V¢ =0, (186a)
0
CEHO+E0 x V¢ = 0. (186b)
0

If we dot each of these equations with V¢ we find that
E, - V¢ =0, (187)
H, V¢ =0. (188)

If we dot the first of Egs. (186) with respect to Hy, or the second with respect
to E,, we find that

E,-H, =0. (189)
If we eliminate H, from Eqs. (186) we find that

Z—“E0+CO(EO><V¢) X Vo = 0. (190)
0

Using the identity
(axb)xec=b(a-c)—a(b-c), (191)

we find that this can be written as

2 B0~ (E¥9- Vo — VoEy - V) 0. (192)

Using the fact that E, - V¢ = 0 this can be written as

1
EO(CQ(X)VQﬁ-V(,ZS) =0, (193)
where
2 C%
c(x) = o (194)

We see that we have once again arrived at the eikonol equation.
The direction of energy flux is given by the Poynting vector

S =cE x H. (195)

Using the fact that E and H are orthogonal to each other, and also to V¢, it
follows that this vector is in the direction of V¢. We see that the direction of
energy flux is in fact normal to the surfaces of constant phase.
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D. First-Order Non-linear Partial Differential Equations

The theory of ray tracing from the eikonal equation is a special case of the
solution of non-linear first-order partial differential equations (14, 15). In
this section we will give a brief outline of this theory. Suppose we have an
equation of the form

F(x,y,2,p.q,r) =0, (196a)
where

p= %, (196b)

q= Z—Q;, (196¢)

r= %- (196d)

For optical applications we are especially concerned with the case where
1 1
F(xvyvzapaQar):_ p2+q2—|—7’2— 2 ) (197)
2 c*(x)

which is just the eikonol equation. In this section we will consider the case
for a general function F rather than limiting ourselves to the eikonal equa-
tion. Our analysis could be extended to the case where the function F also
depends on the function ¢, but that case is just a bit more complicated, and
it never arises in optical applications, so we will not consider it here.

Suppose we know the function ¢ and all of its first derivatives at some
point (xg, yg, zo). Is it possible to determine the solution ¢ in the neigbor-
hood of the point (xg, yo,29)? In particular, is it possible to determine the
second derivatives of the function ¢ at the point (xg,yg,z)? If we take
the derivatives of our equation with respect to x, y, and z we end up with
the equations

OF OF 0p OF 0g OF or _

Ox + dp x  Og Ox  or ox (198a)
OF OF Op OF 0q OF Or

—_ —_— —_— _—— = 1
8y+8p 8y+8q 8y+8r oy (198b)
OF OF 0p OF g OF or (1980)

oz T op oz Taga: Tor oz
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The partial derivatives of p, ¢ and r can all be expressed in terms of the six
second-order partial derivatives of ¢:
o o o o o 9o

vy zZr Zr . 199
0x2’ 9y*’ 9227 Ox 0y’ Ox 0z’ dy oz (199)

By differentiating our equation F(x,y,p,q,r) =0 we have arrived at
three equations for the six second-order partial derivatives of ¢. Clearly
we do not have enough equations to determine the second-order partial
derivatives. The question now arises, is it possible to determine the deriva-
tives of p, ¢ and r in a particular direction? It turns out that this is in fact
possible. To do this we use the fact that

op P o 0q

A = =1 200

dy Oxdy Jdyodx Ox (200a)
Similarly

or Op

— = 200b

ox 0z ( )
It follows that the first of Eqgs. (198) can be written as

F  OF F F
OF OF dp OF 0p OF 0p _ ot

ox Topox oqay  or oz

Simlarly, by switching the order of the other mixed partial derivatives we
can get

OF OF 0q OF 0q OF 0q

—t et —t— == 201b
6y+8p8x+6q8y+8r 0z (201b)
and
a_F+a_Fg+a_Fg+a_Fg— (2010)
dz  Op Ox Oq Oy Or 0z
These equations can be written as
OF
bl ca= 202¢
ax—i—Vp a=0, (202a)
oF
- .a=0 202b
gy T Vaa=0, (202b)
and
oF
bl ca = 202
9z +Vr-a=0, (202c)
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where

(8F OF 8F> (202d)

ap’ o or

These equations show that although we do not know the derivatives of

p, ¢ and r in any arbitrary direction,, we do know the derivatives in the
direction a = (9F/0p,0F /0q,0F /Or). This suggests that there may be

special curves (x(s), y(s),z(s)) such that we can determine (p(s), ¢(s),r(s)).
In particular, if

X = z—g, (203)
V= 68—5, (204)
z= aa—l:, (205)
then we have

pP=- g—? (206)
qg=- g—j (207)
p=- (208)
The function ¢ changes according to the equation

¢ = Ji +g—ﬁ +a—¢z—px+qy+12— ZF+ ng%—f. (209)

This is a seventh-order ordinary differential equation for the unknowns
(x,y,2,p,q,r,$). We can solve this system of equations provided we specify
initial values of (x,y,z,p,q,r,¢). It should be noted that we cannot specify
these values arbitrarily, but must require that they satisfy the equation
F(x,y,2,p,q,1) = 0.

In optics the function ¢ is the phase of our wave field. The curves
(x(s),»(s),z(s)) along which we propagate our solution are know as the
rays. In optics they are what we intuitively think of as being the rays of
light. If we know the phase ¢(x,y,z) on some plane z = z,, then we can
parametrically map out the phase in all of space by tracing all the rays from
the plane z = z,.
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This process of tracing out the phase field assumes that one and only
one ray passes from a given point (x, y, z) to the plane z = z,. In practice it is
possible that no rays pass through some points, and multiple rays pass
through other points. The surfaces separating regions with different num-
bers of rays are once again the caustic surfaces.

Example 7 We will now apply this theory to the eikonol equation where
| 1
F(x,,2,p,4,7) =—<p2+q2+r2—2—>- (210)
2 c*(x)

We will use the shorthand notation p = (p, ¢,r) and x = (x, y, z). The theory
we have just derived shows that

dx

= 211

=P (211a)

dp Ve

r__ - 211b

ds A’ ( )
and

d¢ 1

ik 211

ds  A(x)’ (211c)
where p is required to satisfy the initial condition

p-p:l/cz. (212)
We can eliminate p from this equation to get

d’x Ve

Note that the equation for ¢ can be written as

do _ x|

— = 214

ds  c¢(x) (214)

This equation can be interpreted as saying that the change is ¢ in going
from x(sy) to x(sq) is the travel time to get from x(sy) to x(s;) along the
curve x(s).

Example 8 The system of equations (213) is in some ways the simplest set
of equations we could write down for the paths of the light rays. However, it
suffers from one problem. The equations are not invariant under a change of
parametrization. If we parameterize our curves by £ = £(s), we will end up
getting a different differential equation for x(§) than we got for x(s). The
solutions will result in the same curve in physical space, but the differential
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equations will be different. Unless one is extremely concerned with the
aesthetic properties of their equations this is not a real problem. However,
it turns out that the equations that we derive using Fermat’s principle will be
invariant under a change of parametrization, and hence it will be difficult to
compare the two sets of equations unless we write equations (213) so that
they are also invariant.

In order to do this we note that the first of Eqgs. (213) requires that

. 1

X = Ipl = —. (215)
It follows that along our solution curve we have

[X|e(x) = 1. (216)

It follows that we will not change the solutions to Egs. (211) if we divide the
left-hand sides by |x|c(x). In this case we get the equations

1

—— _x=p, (217)
[X[c(x)
1 1
——p=—-Vc—. 218
e P TV 1
Now if we eliminate p from these equations we end up with the system of
equations
1 d X Ve
il = . 219
e & () =~ )

This is the final system of equations that we will use to compare to the
curves obtained by using Fermat’s principle. Note that if we make a change
of variables £ = £(s), the differential equation in terms of £ will be identical
to the differential equation in terms of s.

E. Fermat’s Principle without Reflections

In the last example we derived the equations for the path x(s) that a light ray
follows in an inhomogeneous medium. We will now show that the path that
gets from point x, to point x; is stationary with respect to the travel time
between these two points. Suppose we have a curve x(s) such that x(sy) = x,
and x(s;) = x;. The time to get from the point X, to the point x; may be
written as

T— J Vi X ﬁ ds. (220)
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The first variation of this integral may be written as
SLX - X ¥

5T:J XX g YO (221)
s c(X)VX - X

c*(x)
If we integrate by parts to get rid of the derivative with respect to éx, and if
we require that 6x vanish at the end points, we find that

5T — — [ (% <m> +IK %) - 6xds. (222)

If the path is stationary, then this integral must vanish for all functions 6x,
and hence x must satisfy the equation

1 d [/ x Ve
c(x)[%| ds (|X|c(x)> -Ta (223)

This is identical to the Eq. (219) which we derived using the eikonol
equation, and requiring that the equation be invariant under a change of
parameterization.

F. Fermat’s Principle for Reflecting Surfaces

In our analysis of beam shaping systems we will not consider any cases
where the rays reflect off of mirrors. However, since it may sometimes be
desirable to use reflecting surfaces in beam shaping systems, we now con-
sider Fermat’s principle for reflecting surfaces. Suppose we have a surface S
defined parametrically by x = f(£,&,). Suppose that a ray goes from the
point x, to the point x;, but first bounces off the surface S. The theory of
waves shows that at the point where the rays get reflected by the surface, the
following conditions hold:

e The normal to the surface, the incident ray, and the reflected ray all
lie in the same plane.

e The incident and reflected rays make the same angle with respect to
the normal to the surface.

We now show that these conditions can be derived by assuming that
the path from x, to x; that touches the surface S is stationary with respect to
travel time. Suppose we have a path that goes from X, to x; after first
touching some point q = f(£;,&) on the surface S. Clearly the paths from
X, to q and from q to x; must themselves be stationary. It follows that in
order to determine the true path we need only determine the point q on the
surface S. In particular, suppose ¢(x,z) gives the travel time to get from the
point x to the point z. We have shown that the travel time ¢(x, z) is in fact
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a solution to the eikonol equation. The total travel time from x, to x; is

given by
T = ¢(x,1(&1,6)) + d(x1,1(&1,8))- (224)
If this travel time is stationary, then we must have
f
o (p;+p)=0fork=12, (225)
O
where
a¢(X07 q)
;=1 226a
P % (226a)
and
8¢(X1 ) q)
=] 226b
P a4 (226b)

are the incident and the reflected ray vectors.

Note that the vectors p; and p, must satisfy |p| = 1/¢(q), and hence we
must have |p;| = |p,|. Let n be the normal to the surface S at f(&;,&,), and let
t; and t, be two independent tangent vectors to the surface. These vectors
can be written as linear combinations of the vectors 9f/0¢; and 0f/9¢,, and
hence Eq. (225) shows that the tangential components of p; and p, must be
negatives of each other. That is,

p; = amn+bit; + city, (227)
then
p,. =an— b,'tl — C[tz. (228)

Furthermore, in order for p, and p; to have the same magnitude, we must
have a; =a, This shows that p;, p,, and n all lie in the same plane.
Furthermore,

p,-n=p,-n, 229
1 r (

and hence the vectors p; and p, make the same angle with respect to n. This
is precisely what we wanted to prove.

Vi. FOURIER OPTICS AND DIFFRACTION THEORY
A. Fresnel Diffraction Theory
Fresnel diffraction theory plays an important role in the theory of beam

shaping since it allows us to access the validity of the geometrical optics
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approximation. Through the theory of Fresnel diffraction we will be able to
turn our physical optics problem into a mathematical problem concerning
Fourier transforms. After giving a derivation of the Fresnel approximation,
we will outline the conditions necessary for it to be a good approximation.

The Fresnel approximation is concerned with the wave field for z > 0
produced when an incoming wave passes through an aperture at z = 0. In
general the aperture may contain an optical element that changes the ampli-
tude or phase of the incoming wave. Elementary theories of diffraction
usually are concerned with the field far from the aperture, and in a narrow
solid angle normal to the aperture. The theory of Fresnel diffraction can be
outlined in three basic steps.

e Write down an exact expression for determining the wave field for
all values of z > 0 provided one knows the wavefield at the plane of
the aperture z = 0.

e Use a paraxial approximation that simplifies this expression
assuming the observation point is near the axis.

e Compute the wavefield away from the aperture by using the first
two steps along with a very simple assumption concerning the field
in the plane of the aperture. The assumption is that at the aperture
the wavefield is equal to the undisturbed incoming wavefield (mod-
ified by any optical element inside the aperture), and zero every-
where else.

The first of these steps can be carried out rigorously. The second step
can be justified quite well using simple asymptotics. The third step is by far
the hardest to justify, but it can be argued that it is plausible provided the
aperture is large compared to the wavelength of the incoming light.

We begin with a discussion of the Fresnel approximation for the scalar
wave equation. Physically we can think of this equation arising from the
equations of acoustics. When we present the vector theory of diffraction we
will see that this theory can be used to determine the various components of
the electric field, but a slight error occurs in the component of the field
normal to the aperture. This error is not big as long as we are near the axis.

B. A Fourier Approach to Diffraction Theory

We suppose that function u(x, y, z) satisfies the Helmholtz equation
Viu+kPu =0, (230a)
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where

2n
k= 5 (230b)
and A is the wavelength. The function u# must also satisfy the boundary
condition
u(x,,0) =1 (x,y) (230¢c)
and
u(x,y,z) has no incoming waves as z — oo. (230d)

This last boundary condition, sometimes referred to as the Sommerfeld
radiation condition, is a somewhat subtle condition, but it is quite straight-
forward to implement when doing analytical work. It requires that as
z — oo all of the waves will be traveling away from z = 0, not towards it.

We choose to solve these equations by spatially Fourier transforming
the function u(x, y, z) in the x and y directions. Let

Ulky, ky,z) = J J ef"(]"—"Hk}y)u(x,y,z) dxdy, (231)

be the Fourier transform of u, and F(k,,k,) be the Fourier transform of
f(x,»). The function U must satisfy the equations

U

P (K — ki —k)U =0, (232a)
Ulky,k,,0) = F(ky,k,), (232b)
U(ky, k,,z) has only outgoing waves as z — oo. (232¢)

The solution to this set of equations can be written as
Ulky ky,2) = F(ky, )™V F 55, (233)

The sign of the square root must be chosen so that the field decays as
z — 00, and so that there are no incoming waves from infinity. In order
to ensure this we must choose the positive square root for K — ki — kﬁ >0,

and choose it so that iy/k> — k2 — k3 < 0 for k* — k% — k; < 0.
We can now inverse Fourier transform this to get
| R A iker /TR
u(x,y,z) = WJ, J, TN (K k) V IR g
(234)
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We have now accomplished the first step in deriving the Fresnel
approximation; we have derived an exact expression for the field u in
terms of its value at z = 0.

This form for the field is sometimes used in diffraction theory.
However, both analytical and numerical work is usually much simpler if
the square root is approximated by

K+ ik
22

This approximation is referred to as the paraxial or Fresnel approximation.
Using this approximation we can write

Ulky, ky,2) = F(ky, k,)e'e 2 HA/20) (236)

V1=K =/~ 1 - (235)

Assuming the paraxial approximation, the Fourier convolution theorem
tells us that the field u(x, y,z) can be written as the convolution of f(x, y)
with the inverse Fourier transform of oA/ 2’2 The inverse Fourier
transform of e*%e ZKHR)2 s ik /2mz) e/ K20 1t follows that we
can write

u<x,y,z>::f-fi-e*1ja° jx &m0 ge gy (237)

27z o0 J—oo
It is often convenient to write this as

ikz il 242 z
€lk“€’k('x +y°)/2z
2nz

ferf@m#@WWEWWW”%m. (238)

—00

u(x,y,z) =

—00

This is usually referred to as the Fresnel approximation (16). This
approximation can greatly simplify both analytical and numerical calcula-
tions.

C. Fourier Optics

We will now consider what happens when the beam passes through a lens of
focal length f at the aperture. We claim that modifying the field at the
aperture by the phase factor e k() g equivalent to passing the
beam through a lens with focal length /. In order to see this note that if
we had a beam of light coming in from infinity, then the field of the incom-
ing light would be constant over the aperture.

f(x,y) = 4e". (239)
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At the plane z = f, the field would be given by

N T T = Ve I e Vs
ulx,y, f) = 3f Ae'Ye™ e N 7006 ddn, (240)
which can be written as
N 2Tk k) g i , .
u(xayvf):—e Ten 7 Ae 6(kX/f,ky/f) (241)

f

This formula assumes that the aperture is infinitely large, and hence
goes beyond the limits of validity of the Fresnel approximation. However,
we could consider the case of an aperture of finite diameter, and we would
get a more complicated but similar result, namely that the field at z = f is all
concentrated near the origin (x,y) = (0,0). This is exactly what a lens of
focal length f would do to an incoming field of this sort.

We now consider the case where the incoming beam is not necessarily
constant at the aperture, but is equal to f(x,y). We assume that at the
aperture z = 0 we have a lens with focal length f, which modifies the phase
of the incoming beam by a factor e RN/ 1 this case the output will be
given by

ka2 2
u(x,y,z) = i ok ok 0 +77)/22

" J“ Jm 16, ) MEH 2K k(2 g gy
. (242)

—00

The output at the focal plane is given by
.k . 7 ‘2 B n 00 00 o : .
u(x,y,z) = lef o k(% +0)/2f J J f(&n)e ik((x€+ym) /f d¢dn, (243)

—00 J—00

which can be written as

M K Bk 1 Ky ). (244)
2nf

where F(w,,w,) is the Fourier transform of the function f(x,y). We see that
except for the term outside of the integral, the field distribution is given by
the Fourier transform of the incoming field distribution. Note that the x
and y dependence of the term outside of the integral has only a phase
dependence. It follows that if we are only concerned with the irradiance
distribution, then we can in fact ignore the terms outside of the integral.
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D. Limits of Validity of the Fresnel Approximation

We now comment on the errors introduced by making the Fresnel approxi-
mation. We should emphasize that we are only considering the errors intro-
duced in the problem of approximating the field u(x, y, z) assuming we know
the field at z = 0. In a real diffraction problem we do not know the field at
z = 0, but approximate it as being the incoming wavefield.

We will now briefly summarize the conditions under which the Fresnel
approximation can be assumed to be valid. In what follows R will be the
effective dimension of the aperture and A will be the wavelength of the light.
We assume that the aperture lies in the plane z = 0, and that we are eval-
uating the field at a point (d cos(6),d sin(h), z).

The Fresnel approximation always assumes that

R>> . (245)

Assuming that this restriction holds, the following is a summary of the
conditions for the validity of the Fresnel approximation.

e The Fresnel approximation will be valid for all values of d if

27R?

F= is not small (246)
e The amplitude of the wave predicted by the Fresnel approximation
will be valid even if Ny < 1, provided

djz < 1. (247)

e Both the phase and amplitude predicted by the Fresnel approxima-
tion will be valid when Ny < 1 if

E o (248)

It should be noted that for the most part we are only concerned with
the irradiance of the field, so the phase errors introduced by the Fresnel
approximation for large values of z will not be important to us. For this
reason we will be justified in using the Fresnel approximation provided
R> ), and that d/z < 1.

We will analyze the two-dimensional case where the aperture and field
is independent of the y coordinate. The three-dimensional case is concep-
tually no more difficult, but the notation and the algebraic manipulations
are simpler in two dimensions. We will assume that the incoming wave field
is equal to f(x) at the aperture z = 0. If F(k,) is the Fourier transform of
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f(x), then the field is given by

u(x,z) = %J

In analyzing the Fresnel approximation we find it fruitful to consider a
family of problems where the form of the function f(x) stays the same, but
the scaling of the function changes. In particular we will set

J(x) =g(x/R). (250)

This includes the situation where the function f(x) is equal to 1 inside
the aperture, and 0 elsewhere. In this case the parameter R would be the
characteristic dimension of the aperture. The Fourier transform of f(x) can
be written as

M (e )V g (249)

—00

F(k,) = RG(k.R), (251)
where G(«) is the Fourier transform of g(x). The field for z > 0 can be
written as

1 (> . o >3
u(x,7) = R —J G (Rl )RV TR g (252)
21 ) o

If we make the change of variables

£ = Rk, (253)
we can write this integral as

u(x, z) = 2i J R G gk VIE TR g (254)

™ —00

If g(€) is a well-behaved function, the Fourier transform G(&) goes to
zero as |£| — oo. It follows that our answers will not be very sensitive to how

we approximate the term 1/ 1 — £2/(kR)? when ¢ is large. This means that we

only need to approximate this well for ¢ = O(1). We now make the approxi-
mation that

kR > 1. (255)

This is the first approximation that will be made when doing the
Fresnel approximation. This is equivalent to assuming that the aperture is
much bigger than the wavelength, an assumption that will have to hold in
order to carry out the general plan of diffraction theory. Under this assump-
tion it is reasonable to expand the square root in a Taylor series:

2 4
kzy/l—52/(kR)2_kz(1—2(lfR)2+8(]§R)4+m>. (256)
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If we ignore the third term and all of the remaining terms in the Taylor
series, we will end up with the Fresnel approximation. We will now see when
we can ignore these terms, and what sorts of errors we will make when we
ignore them. Note that assuming that kR > 1 and £ = O(1), these terms will
always be small compared to the first two terms. However, it is possible that
if kz > 1, then they will not necessarily be small. For simplicity we will now
keep the first three terms, and see when we can ignore the third term. The
conditions for ignoring this term will be the same as for ignoring all of the
remaining terms. If we keep the first three terms in the Taylor series we get

u(x, 2) = 2L ok J“‘ G(€)e~ /NP (6™ 1/26 (&8RP g (257)
a —00
where
R2
Ny =K (258)
z

is known as the Fresnel number and

kR
k=00 (259)
z
We see that if
1 z 1
NCOR “RIOR < 1, (260)

then we can ignore the third term in the Taylor series. This means that if we
are close to the aperture then the Fresnel approximation will be valid
(assuming kR > 1). In this case there is no restriction on the value of x.
If 1/Np is not large, then the Fresnel approximation will hold. This case is
not that interesting, because it is essentially the case when the geometrical
optics approximation holds and diffraction effects are unimportant.

We now consider the much more interesting case when Ny is small. In
this case the phase in the integrand is multiplied by the large parameter
1/Np, and we can apply the method of stationary phase to the integral.

The phase will be stationary at the point &, satisfying

—x*+§o—i=0. (261)

2(kR)?

The method of stationary phase predicts that the field will be given by

1 ikz 1 2N — N/
u(x,2) ~ o= e/t 22T G gy ye T NR, (262)
0
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where

& &

Yo =~ + 5 g (263)
and
3%
G 264
Yo 2iCR? (264)

This is the result predicted by the method of stationary phase assum-
ing that Ny <1 when we keep the first three terms in the Taylor series
expansion of /1 — kZ2/k*. We would like to know how this compares to
the answer we would get if we only kept the first two terms (the Fresnel

approximation).
In the Fresnel approximation we would have
& = x*. (265)
We will have been justified in ignoring the cubic term in the equation for &,
provided
%2
R < 1. (266)

This is equivalent to requiring that

2
X

S <1 (267)

This means that the stationary point when we include the higher-order term
will be nearly the same as the stationary point for the Fresnel approximation
provided the opening angle from the midpoint of the aperture to the point
(x,z) is small.

From the form of the answer in Eq. (262) we see that if we are not
concerned with the phase errors, our answer will be accurate provided we
have approximated &, well. This means that the amplitude of the Fresnel
approximation will agree with the amplitude of the answer obtained by
keeping three terms in the Taylor expansion provided xz/z2 < 1, and
Nr < 1. However, in order for the phase of the answer predicted by the
Fresnel approximation to agree with the more refined answer, it is necessary
that we also approximate v,/ Ny well. The value of ¢,/ N predicted by the
Fresnel approximation is

1
Yo/ Np ~ o (—x*€ + & /2). (268)
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This will be a good approximation to the more refined answer provided that

1 x*

This can be written as

(270)

This agrees with the results we have already summarized concerning
the errors in the Fresnel approximation.

E. The Vector Theory of Diffraction

The theory we have presented so far is limited to the scalar wave equation.
In optics we are concerned with vector fields, the electric and magnetic fields.
We begin by outlining the most naive, but nearly correct, approach to the
vector theory. We know that each component of the electric and magnetic
fields satisfies the scalar wave equation. Just as in the scalar theory we can
assume that the field in the aperture is the same as the incoming field, and
that the fields vanish elsewhere in the plane of the aperture. Using the scalar
theory, we could compute each component of the electric and magnetic
fields.

What are some possible difficulties with this approach? Just because
each individual component of the field satisfies the wave equation does not
mean that the vector field satisfies Maxwell’s equations. If each component
of the field were chosen exactly right at the plane of the aperture, then this
would be the case. However, the assumption that we have made for the
fields at the aperture are not necessarily consistant with the correct fields.
For this reason we may end up getting inconsistant fields in the far field.

As an example of an inconsistancy, suppose that z = 0 is the plane of
the aperture, and that the incoming field is a plane wave propagating in the z
direction. The naive approach to vector difraction theory would imply that
the z components of E and B vanish at the aperture, and hence vanish
everywhere. A thorough analysis of this situation shows that the z compo-
nents of the fields do not vanish identically.

This last example merely shows that the results of scalar diffraction
theory cannot be exactly right. However, the theory was never intended to
give exact answers. Just because the fields are inconsistent does not neces-
sarily mean that they are worse approximations than a theory where the
fields satisfy Maxwell’s equations. However, the theory that takes into
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account the vector nature of the fields is in fact more accurate for large
angles.

A more consistent approach to the vector theory can be obtained by
noting that it is not possible to arbitrarily specify all three components of E
and B at the aperture. It is only necessary to specify the tangential electric
fields at the aperture. We now argue that once these fields are known, we
know E, and E| for z > 0, and we can then determine E. and B.

Clearly both E, and E, satisfy the scalar wave equation. It follows that
if we know these components at z = 0 then we can determine them every-
where for z > 0. Once we know E, and E, we can use the equation

OF, OF, OF. _
ox Oy 0z

0, (271)

to determine E. up to an arbitrary additive function f(x, y). Assuming that
we have a finite sized aperture, the field E, and in particular the function E_,
must approach zero as z — oo. This fact allows us to determine this arbi-
trary function f(x,y). It follows that we can determine E.. We can now
determine B by taking the curl of E and using Faraday’s law. It follows
that we can determine all the components of both E and B once we specify
the tangential components of E at the aperture.

The vector theory of diffraction (17) approximates the tangential com-
ponents of the electric field using scalar diffraction, but then computes the z
component based on these fields. We will restrict ourselves to the case where
the incoming wave has no z component of the electric field. In this case the
scalar theory of diffraction predicts that the diffracted field will also have no
z component of the electric field. We will now show that in this situation the
z component of the electric field can be ignored provided we are only inter-
ested in small angles, a condition that we have already assumed in making
the Fresnel approximation.

Suppose that at the plane of the aperture the tangential components of
the electric field are given by

(Ex(x,3,0), Ey(x,9,0)) = (¢x(x/R, y/R),g,(x/ R, y/R)). (272)

The x and y components of the electric field each satisfy the scalar wave
equation. By Fourier transforming the wave equation we can conclude that

1 00 (00 ,
Ex(x7 Vs Z) = 4_7T2 R2 J J el<kxx+ky}>Gx (ka7 k}’R)

x VR gl de, (273)

—00
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and

4
« VTR g dk,, o

1 o¢] 00 i ' :
E,(x,y,z) = ?Rz J J el(/f.\-AnLk,.~.\~)G}’_(ka7 k,R))

—00

where G, (ky,k,) and G, (k,,k,) are the Fourier transforms of g.(x,y) and

gy (X, y) :
Using the fact that V - E = 0, we can write the field E. as

0.8}

1 o0 (- 5 i 2 » 2
E@m@=—zgﬁj J ORI (e e e VTR e e,
—00

—00

(275)
where

1
F(kxa ky) =T (kay(kavkyR> + kyGy(ka k R))

s by
2 — k32— k2
(276)

These are exact expressions assuming that we know the tangential
electric field at the plane of the aperture.
The expression for E. is very similar to the expressions for E, and E,

except that it has k,/\/k* — k3 — k? multiplying G, and k,/\/k* — k3 — k}
multiplying G,. Under the conditions for the Fresnel approximation we can
make the approximation

—k"' = %, (277)
K=k — kf
and
k, k.,
4 2. (278)

) -2
IR — 2 -2

The Fresnel approximation is based on the assumption that k. /k and k,/k
are both small in the region of interest. It follows that the factors multi-
plying G, and G, will always make the term E. negligible compared to E,
and E|.

For example, if the Fresnel number is small, then we can evaluate
these integrals using the method of stationary phase. We could put these
integrals in dimensionless form and arrange things so that there was a large
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parameter multiplying the phase. However, we can take a short cut and note
that in the Fresnel approximation, the phases of the integrands are given by

2, 12

¢=kx+ky—z kx;];ky (279)
The phase will be stationary when

x—kuz/k=0, (280)
and

y—kyz/k =0. (281)

This shows that when we apply the method of stationary phase, the z com-
ponent of the electric field can be related to the other two components by

x y
E.(x,y,z) = - E.(x,y,z) + 2 E, (x,y,z). (282)

This shows that provided |x/z| < 1, and |y/z| < 1, the z component of the
electric field will be negligible compared to the tangential components. This
was based on the assumption that the Fresnel number was small. If the
Fresnel number is order 1, we can show that the z component will be
small provided only that kR < 1.

Vil. GEOMETRICAL THEORY OF BEAM SHAPING
A. One-dimensional Theory

In this section we present a theory of beam shaping based on geometrical
optics. Special cases of this theory may be found in the literature on geome-
trical beam shaping (18). The theory we present is not the most general one
using geometrical optics since we assume that the rays are moved around
continuously, and in a very orderly manner. In the geometrical optics limit it
is possible to accomplish the same goal by moving the rays around in a
discontinuous and less orderly manner, but when we analyze beam shaping
using diffraction theory we will see that this is very undesirable. We believe
that it is very difficult to improve on a beam shaping system designed by the
techniques described in this section. However, some systems designed this
way will work very well, while others will work very poorly. One must go
beyond the geometrical theory and use diffraction theory in order to under-
stand why this is so. That will be the subject of the next section.

We begin by considering the beam shaping problem in one dimension.
This theory is directly applicable to cases where the incoming beam has an
irradiance distribution that is the direct product of two one-dimensional
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distributions. A two-dimensional function f(x,y) is the direct product of
one-dimensional functions if

S(x,9) = f1(x) L) (283)

If both the input and the desired output can be written as a direct product,
then the problem can be decomposed into two one-dimensional beam shap-
ing problems. This is the case when we try to turn a Gaussian beam into a
rectangular flat top beam.

We suppose that an incoming parallel beam of light has an irradiance
distribution of 7(x/R), and at the plane z = 0 the beam passes through a
phase element that refracts the beam. We would like to determine the phase
element such that the irradiance distribution at the plane z = f is given by
A(R/D)Q(x/D), where A is a constant chosen so that the energy of our light
beam is conserved.

In our analysis we assume that the aperture contains a lens of focal
length f, plus an additional optical element that allows us to shape the
beam. In practice these two optical elements can be combined into a single
optical element, but this may not be a desirable feature if one wants to use
the same element to shape the beam at several different focal planes. We
suppose that our beam shaping eclement introduces a phase shift of
(RD/fe)d(x/R) at the plane z =0 (c is the speed of light). The goal of
our analysis is to determine the function ¢ such that the beam at the
plane z = f has the desired shape. This analysis is carried out in three steps.

e Determine the constant 4 that determines the irradiance of the
output beam. This is accomplished by requiring that the total
energy of the output beam is the same as the energy of the incom-
ing beam.

e Determine a function that maps rays at the plane of the aperture
into rays at the focal plane. In particular, we determine a function
a(€) such that a ray that passes through the aperture at x = R¢
passes through the focal plane at x = Da(§). This step can be
carried out by requiring that the energy of any bundle of rays
that enters the aperture is the same as the energy of the same
bundle of rays as they pass through the focal plane.

e Determine the function ¢(£) that gives us the phase shift intro-
duced by our beam shaping element. Once we know the function
a(&) this step can be carried out by requiring that the time for a ray
to get from z = —oo to the focal plane is consistent with Fermat’s
principle.

At this point the reader may feel annoyed by our introduction of the
lengths R and D. For example, it would be simpler if we said that the input
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beam had the irradiance /(x) rather than /(x/R). However, the lengths R
and D have been included in the definition of our irradiance profiles, our
normalization constant 4, and our phase shift ¢ in order to bring out certain
scaling properties of beam shaping. These scaling properties will be espe-
cially important in the next section when we discuss diffraction effects.

In order to carry out the first step in this process we note that the
energy of the incoming beam can be written as

E, = h I(s/R)ds = R h I(s) ds. (284)
| |

—00 —00

The energy of the outgoing beam can be written as
AR
D

o0

JOO Q(s/D)ds = ARJ O(s) ds. (285)

—00 —00

Eoi =
If we equate these two expressions we arrive at the result

J I(s)ds
A=22— (286)
J O(s)ds
—00
We have accomplished the first of our three steps. We now determine
the function «(§) using the conservation of energy.

R¢ R (Pl

J Is/R)ds = A % J 0(s/D) ds. (287)
This is a mathematical statement of the fact that the energy of all of the rays
with initial x coordinates less than R¢ must have the same energy as all of
the rays at the focal plane that have x coordinate less than Da(€). A simple
change of variables gives us the equation

3 a(g)
J I(s)ds = AJ O(s) ds. (288)

As long as the functions I(s) and Q(s) are both positive, it is clear that
the function «(€) is uniquely determined by this equation. This follows from
the fact that for a given value of £ we can increase the value « until the
integral on the right equals the integral on the left. Since Q(£) > 0, it is clear
that for any value of ¢ there is only one value of « such that the two integrals
will be equal.

The functions 7(s) and Q(s) are both non-negative, but it is possible
that they could vanish on certain intervals. This would be the case if we were
trying to transform a beam into a beam that had a core of zero irradiance

Copyright © 2000 Marcel Dekker, Inc.



(such as an annulus). In this case we could have a whole interval of points «
that are assigned to the same point £. This degenerate case can be thought of
as a limiting case of when the functions /(s) and Q(s) are both positive.

Equation (288) determines the functions «(£). However, there are a
few motivations for differentiating this equation to get

da
de

This gives us a differential equation for the function «(€). One way of
solving this differential equation is to integrate this equation once to get
back to Eq. (288). However, if one needs to solve the equation numerically,
it may be more convenient to solve the differential equation than to solve
Eq. (288). Another motivation for writing down the differential equation is
that when we make the stationary phase approximation to diffraction theory
we end up with this differential equation. Yet another motivation comes
from the fact when we consider problems that are neither one dimensional
nor radially summetric we must revert to a differential equation that is
analogous to (289).

In the energy equation (288) we have assumed that the orientation of
the incoming rays is the same as the orientation of the rays at the focal plane
z = f. By this we mean that incoming rays with £ < 0 get mapped into rays
with a < 0 at the focal plane, and incoming rays with £ > 0 get mapped
into rays with « > 0 at the focal plane. It is possible to reverse the orienta-
tion of the rays so that incoming rays with £ > 0 end up at the focal plane
with o < 0, and vice versa. In this case the energy equation can be written
as

AQ(a) 1(§). (289)

RE 00

I(s/R)ds= A g JD " O(s/D) ds. (290)

—00
Changing variables in the integrals gives us the equation

3

o.¢]

I(s)ds = A4 J o O(s) ds. (291)

J =00
If we differentiate this equation we get

da

AQ(a) —= = —I(8). (292)
dg

These two solutions will give identical irradiance distributions as long

as we evaluate the irradiance at the plane z = f. However, as we move away

from the plane z = f these two solutions have very different properties.

When we apply the method of stationary phase, the two different types of
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solutions appear by choosing different signs of the phase function. These
will also be discussed in Sec. IV.E of Chapter 3.

The solutions derived using Eq. (288) or Eq. (291) are the only ones
that allow us to shape the beam so that the rays are moved around in a
continuous fashion, and so that the function £(«) (the inverse of «(¢)) is
single valued. When we study the effects of diffraction we will see that beam
shaping systems that do not satisfy these requirements will suffer much more
from the effects of diffraction than ones that do.

We have now completed the first two steps in our analysis, and we are
ready to determine the function ¢(§). We assume that the rays that enter the
aperture are coming in parallel. For our purposes it is simpler to assume that
rays are coming from a distant point source at (0, —L), and we will then let
L — oo. The travel time for a ray to get from the point source to a point
(Da, f) consists of three parts:

e The time 77 (¢) to get from the source at (0, —L) to a point (R¢,0)
on the aperture;

o The time 40,y (§) that it takes to get through the Fourier transform
lense, and the beam shaping element at (R, 0);

e The time #,(£,«) that it takes to get from a point (R£,0) on the
aperture, to a point (Da, f) at the focal plane.

The total travel time is given by
1§ ) = 11.(8) + laetay (§) + /(& ). (293)

Fermat’s principle requires that the travel time of a ray that starts out
at (0, —L), passes through the aperture at (R&,0), and ends up at (Da, f)
must be stationary. This means that it must be stationary compared with the
travel time of any nearby ray. In particular it will be stationary with respect
to the travel time of a ray that goes from (0,—L), passes through the
aperture at (R§ + Rd§,0), and then goes straight to the point (De, f). In
order for this to be so we must have

o1&, a)
23

=0. (294)

We will now see that this equation allows us to determine ¢(¢).
The travel time ¢; is given by

2
ZL(§):%\/L2+§2%% <L+2€L>. (295)
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In the limit as L — oo we end up with the equation

0

o 11(§) = 0. (296)
The travel time f4q1,y (€) is given by

LR RD
ldelay (§) = — e + o(&) Je (297)

The first term on the right gives the time delay introduced by the transform
lens, and the second term gives the time delay introduced by the beam
shaping element.

Taking the derivative of this we get

0 R* RD 9
% lelay (§) = = f_c+f_c %

The travel time #,(&, ) is given by

(1(&0) = -\ + (R~ Da)’. (299)

The paraxial approximation assumes that D*a*/f*> < 1, and R*€*/f* < 1,
so that we can make the approximation

o(§). (298)

2

. €
(€ +/2) zf+?. (300)
In this approximation we get
Do — R¢)?
and hence
0 R
€ (& a) % (RE — Da). (302)

Combining our expressions for 9/9¢(t; + teay + tr) We end up with
the very simple equation

dp

d¢

Assuming we know the function «(¢), the function ¢(§) can be deter-
mined by quadrature.

We now collect our beam shaping equations into a single set of
equations. Given the functions 7(s) and Q(s), the phase function ¢(¢) is

a(é). (303)
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determined by first calculating the constant A

— (304a)
| ewa
then solving the differential equation
d
AQ(a) g = +1(¢) (304b)

in order to determine «(€). The sign in this equation depends on whether or
not we have reversed the orientation of the rays or not. Finally the function
¢(&) is obtained by solving the differential equation

dop

de

A very simple scaling property of these equations will now be pointed
out. If we determine a beam shaping system for the lengths D and f, then we
can use the same phase function (RD/fc)p(§) for a new beam shaping
system with lengths D, and f|, provided D,/f; = D/f. This means that we
can change the scale of our system by merely using a different quadratic lens,
without changing the optical element determined by ¢. This follows from
the fact that the function «(¢) is independent of the D, f, and R. Tt follows
that the function ¢(¢) is also independent of these quantities. Clearly the
function (RD/fc)¢(€) will not change as long as we keep the ration D/f
fixed.

a(f). (304c)

B. Direct Product Distributions

We would once again like to emphasize that the theory of the last section
can be applied when both the input and the desired output can be written as
direct products. That is, we can use the theory of the last section if we can
write

1(x,y) = h(X) L (),

and

0(x,y) = Q1(x)2:(»).-

In this case the phase function of the beamshaping element can also be
written as a direct product.

B(x,y) = ¢1(x)P2(y)-
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One very important example of this is when the input is a circular
Gaussian,

I(x,y) = e CH2

and the output is a rectangular flat-top beam:
O(x,y) = Rect(x/A4) Rect(y/B)

where
Rect(x) =1 |x| < 1
Rect(x) =0 |x| > 1

C. Radially Symmetric Problems

We now derive a geometrical theory of beam shaping that applies when we
are trying to convert a radially symmetric beam with irradiance profile
I(r/R) into a radially symmetric beam with irradiance profile that is pro-
portional to Q(r/D). We assume that the desired output beam has the
irradiance (AR*/D*)Q(r/D). As in the one-dimensional case we begin by
computing the normalization constant 4. The total energy of the incoming
beam is given by

E, = 27TJ I(s/R)sds = 2nR* J.X sI(s) ds. (305)
0 0
The energy of the output beam is given by
ARZ 00 00
Eou="05 J 5O(s/D) ds = AR J 5O(s) ds. (306)
0 0

If we require that the energy of the incoming beam is the same as the out-
going beam we must have

JOC sI(s)ds
A=20 (307)

00

|| sow)ds

0
We now determine the function «(€) such that a ray that encounter our
optical element at (R&,0) ends up at (Da, f).

The conservation of energy now implies that

{o¢]

00 ARZ
JRg I/ Rysds = J[M) 50(s/D) ds. (308)
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This equation is a mathematical statement of the fact that the energy of the
rays that encounter the plane z = 0 with » > R¢ is the same as the energy of
the rays that encounter the focal plane with r > Da(¢).

A simple change of variables gives us the equations

0] o0
J I(s)sdz = AJ sQ(s) ds. (309)
3 a(9)

Just as in the one-dimensional case we can argue that the Eq. (309)
uniquely determines the function «(§). As in the one-dimensional case it
may be convenient to differentiate this equation to get a differential equation
for «(§).

400(0) %~ r(e) (310)

£

This equation assumes that the ray that starts at the axis of symmetry
ends up at the axis of symmetry at z = f. In analogy to the one-dimensional
case we could also consider the case where the ray that started on the axis is
sent out infinitely far from the axis when z = f. We could devise an optical
element that did this, but it would necessarily be quite degenerate and suffer
from diffraction effects.

Now that we know the function «(§) we can use Fermat’s principle to
determine the optical thickness ¢(r/R) that can actually accomplish this
beam shaping.

Once again, let —r?/2fc + RD$(r/R)/fc be the time delay introduced
by our optical element, and z = f be the imaging plane. Fermat’s principle
requires that

d¢)_
% = 0(©. (311)

This is exactly the same equation we used in the one-dimensional case. Since
we know the function a(£), we can determine the function ¢(£) by quad-
rature.

Once again we can argue that the function ¢ is independent of the
parameters D and f, and hence the time delay (RD/fc¢)¢(r/R) depends on D
and f only through the ratio D/f.

D. More General Distributions

So far we have considered one-dimensional (applicable to direct product
profiles) and radially symmetric beam shaping. In this section we outline
how one would determine an optical element that turns an incoming
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irradiance profile 7(x/R,y/R) into an irradiance distribution that is pro-
portional to Q(x/D,y/D) at the image plane f.

The solution to this problem is much more difficult than the ones we
have already encountered. We do not have any first hand experience in
actually doing this, but feel that it is worth writing down the equations
that would allow one to solve this problem.

We begin by assuming that the irradiance distribution at the focal
plane f is equal to (4R*/D*)Q(x/D,y/D). In order for the energy of
input beam to be the same as the output beam we must have

Jocoo JOOOO I(s,t)dsdt )

Jw JOO Q(s,l)dsdt.

—00 —00

A=

We now write down an equation for the conservation of energy of any
bundle of rays. Suppose rays that encounter the optical element at (s, ¢,0)
end up at (x(s, 1), y(s, ), f). In order to conserve energy we must have

I(s,t) = £AQ(x(s, 1), (s, 1)) (s, 1), (313a)
where
_oxdy_oxoy
J(s, 1) = % 91 91 Bs (313b)

This is the generalization of the differential form of the energy equations
that we have written down previously. It can be justified by noting that the
rays in the area s < x < s+ ds, t < y < t + dt get mapped into a region with
area J(s, 1) dsdt at the focal plane.

If the time delay produced by our beam shaping element is given by
(RD/fc)p(x/R,y/R), then Fermat’s principle shows us that the function
@(s, t) must satisfy

190
e x(s, 1), (314a)
190
T (s, 1). (314b)

These two equations can be derived almost identically to the one-
dimensional and radial cases. We need two equations because we need to
guarantee that the path is stationary with respect to changes in both the x
and y directions. Using this last set of equations we can write our energy
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equation as

oy 90\ [ 0*¢ & 5o\

This is a nonlinear partial differential equation for the function ¢(s, 7).
For the special cases where the profiles are radially symmetric, or can be
written as direct products, we end up with our previous results. In general it
is not clear that this equation is enough to determine the function ¢(s, ?). In
order to get a feel for this equation we consider a linearized version of this
equation. We will see that the linearized equations end up giving us an
equation that is very similar to Poisson’s equation. We will see that the
linearized equations give us a well-posed mathematical problem, indicating
that the same will likely be true of the full non-linear equations.

In order to get a linearized system of equations we suppose that the
function I(s, 7) is almost identical to the function Q(x,y). This would imply
that the function (x(s, 1), y(s, t)) is very nearly equal to (s,?), and hence

2, 2

a&nzszt. (316)
This means that the function ¢ is merely reversing the phase difference
caused by the lens that focuses the beam at z = /. We will now assume that

O(x,y) = I(x,y) + 6P(x, ), (317)
where § is a very small number. We also assume that
A =1+ éa, (318)
and
2, 2
a&0:32’+w@g. (319)
To first order in 6 we can write
0o O
050 G ) = 1650) + 8P(s.0) + V(s.0) - V1.0, (320)
2, 2 20\ 2 2 2
Podo (0N | (T P o)
os* or Ds Ot os*> = or
If we expand Eq. (315) to first order in 6 we end up with the equation
2 2
P(s,t)+al(s,t)+I(s7t)<g—12p+aa—llf)+V1/J~VI:0, (322)
s
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which can be written as
V- (I(s,t)V) = —P(s,t) — al (s, 1). (323)

If we integrate these equations over the xy plane, we find that the left-
hand side vanishes (assuming 1 vanishes at co), and hence the constant a
must be chosen so that

o.0) o0 {o.¢]
J J P(s, 1) dsdt—i—aJ I(s,t)dsdt =0. (324)
Once we have chosen « in this way, we can uniquely solve for v if we require
that ¢ vanishes at co.

The fact that we can solve the linearized equations is an excellent
sign that the nonlinear equations (315) will uniquely determine the

function ¢.

E. Examples

We will now present some concrete examples from the geometrical theory of
beam shaping. Some of these examples are important for their own sake, but
other examples are presented to illustrate some of the difficulties that can
arise when applying the geometrical theory. The difficulties will not appear
until we analyze them using diffraction theory.

Example 9 Turning a Gaussian into a Flat-top Beam—I Let

I(s)=e", (325)
and
O(s) =1 for |s] < 1, (326)
O(s) =0 for |s| > 1. (327)
The normalization of the energy requires that
J e ds = 24, (328)
or
A= (329)
The function «(§) must satisfy
da 2 2
T2 o€
O(a) T ﬁe . (330)

Copyright © 2000 Marcel Dekker, Inc.



As long as |a| < | this can be written as

j—?:%efz. (331)
The solution to this equation can be written as
a(§) = erf(), (332)
where
2 (¢ e
erf(§) = 7= Jo e ds. (333)

Since |a| < 1 for —oo < € < 0o, we conclude that we do not need to consider
the case where Q(«) = 0.
We now use the equation

d
d—? = erf(¢), (334)
to find the solution
2 2
56 == (€357 etl©) +1e -4). (339

This example has been presented without any reference to the scalings
R and D. If we were trying to turn a beam with the initial distribution
I(x/R) into a beam with distribution Q(x/D) at the focal plane f, then
our beam shaping element would need to introduce a phase delay of

(RD/fe)p(x/R).

Example 10 Turning a Gaussian into a Flat-top Beam—II We consider the
same problem as in the previous example. However, this time we present a
solution that reverses the order of the rays.

The function () must satisfy

da 2 2
T 28 336
Olo) g =~ 7= (336)
As long as |a| < | this can be written as
da 2 >
i
aE NG e . (337)
The solution to this equation can be written as
a(§) = —erf(§). (338)

Copyright © 2000 Marcel Dekker, Inc.



We now use the equation

d

= ) (339)
to find the solution

o) = - 2= (e 5 ertle) + 1€ -1). (340

Example 11 Turning a Radial Gaussian into a Radial Flat top We now
consider the problem of turning a radial Gaussian into a radial flat top. In

particular suppose I(s) = ¢ *, and
O(s)=1lifs< 1, (341)
O(s) =0 if s> 1. (342)

In this case we must choose the constant 4 so that
An = J se* ds. (343)
0
It follows that
1

A=—. 44
o (344)

Equation (310) implies

a Z—? =2nge €. (345)

If we require that «(0) = 0, this equation implies that

a(&) =V2rV1 —e ¥, (346)

Equation (311) for ¢ now implies that

B(€) =V2r E V1—e*ds. (347)

Example 12 Turning a Gaussian into a Stairstep We consider the case
where the input beam is a Gaussian

I(s)=¢", (348)
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and the desired output beam is a stair step function.

O(s) = ls| < ap, (349)
o) =1laoy<|s| <1, (350)
O(s) =0 |s| > 1. (351)

This situation clearly is symmetrical, so that the phase function
o(&) = ¢(=£), and «a(§) = —a(—¢). For this reason we will only concern
ourselves with finding ¢ and « for £ > 0.

The normalization condition requires that

A_ ﬁ
S 20p(y—1)+2°

There will be a point &, that separates the rays that get sent into the
first step from those that get sent into the second step. We do not know this
point ahead of time, but must calculate its value given the parmeters v and
ag. The function a(€) must satisfy

do 1

(352)

e

i A e~ for £ <&. (353)
This equation is valid for a < «y. We also have

da 1 2

—=—e f 4

T ¢ or £ > ¢ (354)

This equation is valid for oy < a < 1.
The first of these equations can be integrated from 0 to &, to give

2
This is not an explicit expression for &, but it can very quickly be deter-
mined using an iterative method such as Newton’s method. Once we have
determined & and A we have explicit expressions for «(¢). We can now
determine the function ¢(£) by solving the equation

¢ 1

49___ €

T e~ for & < &, (356)

o 1 g

d—fzzzef for € > &), (357)
along with the requirements

$(0) =0, (358)
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and the requirement that ¢ and its derivative are continuous at &,. These
equations are almost identical for those of turning a Gaussian into a flat top.
Let ¢y(&) be given by

60(6) = € YT erf(e) + 1€ . (359%)

Then the phase function for the stair step can be written as

o(6) = A%qso(s) for € < &, (359b)

and

E

5O =4 (’Y¢0(§) (0= 1)d0(E) + (€ — &)1 —y)erf(&) ”)

for £ = &,. (359¢)

Example 13 Numerical Solutions for Symmetrical Profiles There are
many situations where it is very cumbersome, or impossible to obtain closed
form analytical solutions for the function ¢(£). However, it is not difficult to
write a computer code that solves for ¢. We now consider how to write a
code for the special case where both I(s) and Q(s) are symmetric with
respect to reflections in s. That is

I(s) = 1(—s), (360a)
and

O(s) = O(—s). (360b)
In this case we can argue that

a(=§) = —a(§), (361a)
and

P(=€) = ¢(§). (361b)

This means that we can solve for « and ¢ on the interval £ > 0, and this will
allow us to determine these functions everywhere.

We now outline how one can use an ODE (ordinary differental equa-
tion) solver to determine the function ¢, given the functions Q(s) and I(s).
In order to do this we first determine the constant 4.

doe T (362)
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In many situations, this constant can be determine analytically, even when
the function ¢(£) cannot. In these situations, one can analytically compute
A. In general, one can use the ODE solver to compute the integrals in both
the numerator and the denominator. Once the constant 4 has been deter-
mined, we use the ODE solver to solve the following intial value problem.

da 1
& = o 1O (363a)
d¢

Either sign can be taken in the first of these equations. As we have already
mentioned, each sign corresponds to a physically different solution.
These initial conditions for these equations can be written as

a(0) =0, (364a)
$(0) = 0. (364b)

These equations can now be integrated out to any value of £ that you
want. A plot of ¢(£) can be made by outputting the values as the integration
procedes.

VIil. DIFFRACTIVE THEORY OF LOSSLESS BEAM
SHAPING

A. Scaling Properties

We now present a theory of lossless beam shaping that is based on diffrac-
tion theory (19). In the geometrical theory of beam shaping it is possible to
turn a beam with one irradiance distribution into a beam with any
desired irradiance distribution, provided only that the energies of the
incoming and outgoing beams are the same. However, when diffraction
effects are taken into account, this is no longer possible. The geometrical
theory is valid provided the wavelength is small. The major goal of this
section is to quantify what we mean by a small wavelength. As in our
discussion of geometrical beam shaping, we are interested in turning a beam
with an incoming irradiance distribution of I(x/R,y/R) at the plane z =0
into a beam with an irradiance distribution of Q(x/D,y/D) at the plane
z =f. We will see that the parameter

_ 27xRD
=

p (365)
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is a dimensionless measure of how small the wavelength A is. If this para-
meter is large, then the results from the geometrical theory of beam shaping
should be valid. If it is small, then diffractive effects will be important. The
parameter § is one, but not the only, measure of how difficult our beam
shaping problem is. We will see that the smoothness properties of our input
and output beam is another important measure of the difficulty of the beam
shaping problem.

Suppose that at the plane z = 0 the incoming wave field is given by
g(x/R,y/R), and we have an aperture that has a lens with focal length f
along with an additional phase element ¢)(x/R, y/R). The theory of Fourier
optics shows us that the wavefield at z = f is given by

| 7
Ulxr,yp.f) = N oM TN
o0 o.¢)
x J J g(x/&y/R)eiw(X/RJ’/R)e*ik(X_/x+_w_\~')/f dx dy.
o (366)

We would like to determine a function ¢ such that the output
U(xys,yy) satisfies

R2
UGy, 20)I* = A 55 Q(xs/ D,y /D), (367)

where the function Q determines the shape of the desired irradiance distri-
bution, D determines the scale of the desired irradiance distribution, and A
is a scaling factor that guarantees that the energy of the output beam is the
same as that of the incoming beam. At this point our problem has the
parameters A = 2x/k, f, R, and D, and it is not clear what we mean when
we say the wavelength is small. We can collect all of our parameters into a
single parameter by introducing dimensionless coordinates. In particular,
assuming we could choose 1 so that our desired output had exactly the
right shape, we would have

47T2A
G(we,w,)|* = ——— O(w,/B,w,/B), (368a)
g
where
Gl w,) = j j g(€,m)e M HEN g gy, (368b)
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where we have introduced the variables

§=x/R, (369a)
n=y/R, (369b)
wy = X/ RE/f, (369¢)
wy = yyRE/f, (369d)

and
(& n) = Bo(En). (369)

We have chosen to write the phase as (¢ rather than as . This will be
convenient when we are doing the large 3 approximation. We will refer to
the Egs. (368) as the dimensionless beam shaping equations. Given the
function g, the function Q, and the parameter 8 our goal is to determine
a constant A and a function ¢(, n) such that Eqs. (368) are satisfied. This
statement of the beam shaping problem is very nice because we have col-
lected all of our parameters into the single parameter (.

B. One-dimensional Beam Shaping

As in the theory of geometrical beam shaping, we now consider problems
where the incoming beam g(&,7) and the desired output Q(s,¢) can be
written as a direct product. This allows us to separate the beam shaping
problem into two one-dimensional problems. In particular we are trying to
find a function ¢ and a constant A4 such that for a given g(£), O(s) and 3 we

have

Gl =477 0(w/9), (370)
where

6) = [ sl e g (3700)

In general it is not possible to choose ¢ so that Egs. (370) are satisfied
exactly. For example, if § is small, then we would need the Fourier trans-
form of g(f)ei°<£) to be very concentrated around the origin. This would
contradict the uncertainty principle. To make this statement more precise,
we can apply the uncertainty principle to the function g(f)ei”3¢(§) and its
desired Fourier transform to get

NG > 1, (371)
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[INCERE ’ .

and

GGG
Ag=tz (373)
| tetpae

If we could choose ¢ so that we accomplished our beam shaping
exactly, we would have

A2m

G(w)* = 5 (w/B). (374)
This would imply that

Ag = B4, (375)
where

| wowpa
Ap =22 —, (376)
| towpa

and hence,

D Do > (377

This inequality cannot be satisfied if § is too small. It should be
evident that if § is very small, then it will not even be possible to turn the
beam into a profile that is even near the desired profile. This shows that it is
not possible to do a good job of beam shaping if the parameter [ is small.
We now consider the case where (3 is large, and show that in this case if we
choose ¢ to be the function obtained from using geometrical beam shaping,
then this will nearly satisfy our beam shaping problem.

We begin our analysis of the beam shaping problem by commenting
on our decision to write the phase delay as 8¢ (). This scaling will allow us
to use the method of stationary phase to determine the behavior for large
values of 3. It should be noted that this scaling predicts that the phase
function grows linearly with the frequency of light that we are using, a result
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that would hold if we designed a lens based on geometrical optics, and kept
the same lens for all frequencies of light.
If we use the variable

(378)

a==,
g
our beam shaping problem can be written as follows: given the function g,
the function Q, and the parameter [, try to determine the constant 4, and
the function ¢ such that

G(a) = JOO (&) ag, (379a)
|amfz%§ (a). (379b)

The integral in Eq. (2.379a) is in a form that can be evaluated using the
method of stationary phase. To lowest order in 3, the method of stationary
phase shows us that the integral is given by

Gla) ~ eole) o) or 8E@) (380)
Bo" (€(ax))

where the function £(«) is determined implicitly by the equation

d
g El@) —a=0. (381a)
If we have chosen ¢ so that the beam has the desired output, then we
have
2
g (§(a))
AQ(a) = =2—=. 381b

With a little bit of manipulation we can make these equations
identical to the equations for geometrical beam shaping. In order to do
this we begin by differentiating the first of Eqgs. (381) with respect to «.
This gives us

*¢(€(e) dé(a) _

42 da 1. (382)
Using this equation, the Eq. (381b) can be written as

df(e) 5 . _

“da g (§) = 40(a). (383)

If we use the fact that the irradiance of the incoming beam is given by
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|g(§)\2 = I(£), we get the system of equations

% 11¢) = 40(), (384)
d
e olE@) —a=o. (384b)

If we integrate the first of these equations from —oo to oo we find the
normalization condition

| r9ae
A= (384c)

J O(a)da

These equations are identical to Egs. (304) derived using the geometrical
theory of beam shaping.

C. Two-dimensional Beam Shaping

We will now quickly summarize how our results can be extended to apply to
arbitrary beam shape problems, that is, ones that are not separable. In
general we want to find a function ¢(&,7) such that

G(x,y) _ JOO Joo g(g)eiﬁ(d)(fv")7-\'57.‘"77) dedn, (38521)
47 4
GO = =55 0. ). (385b)

An argument almost identical to that used in the separable case shows
that the uncertainty principle requires that

BPAAN > 1, (386a)
where
| | @vmrstcmpaan
Ay = 5T : (386b)
NIRRT

= : (386¢)
J J |Q(w,\‘7wy)|2dwx dwy

—00

j j (2 + D)0y, 0,) ] dooy dos,
AQ*
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As in the separable case, this inequality cannot be satisfied if 3 is too
small. We now consider the limit of the integral in (385a) as § — oco. Using
the two-dimensional method of stationary phase we find that

47?

G )P~ e [g(&o, mo) %, (387)
B (&)
where (&, n9) are determined implicitly by the stationarity conditions
0
% (&o:m0) = x, (388a)
9 s(om) =y (388b)
677 05 /0 .

and the function J is defined by

2 2 2 2

If we use the stationarity conditions, we can write the function J as

If we require that the function |G(x, y)|* has the desired output we arrive at
the equation

](£Oa 770) = AQ(XvJ’)J(ﬁm 7’0)' (390b)

These last two equations along with the stationarity conditions in Eq.
(388) are identical to the two-dimensional equations that we derived using
geometrical optics.

D. Radially Symmetric Problems

In our section on geometrical beam shaping we considered problems that
have radial symmetry. We now consider how to analyze these problems for
the effect of diffraction. Problems with radial symmetry can be considered
as a special case of the general theory of two-dimensional beam shaping.
These problems are important enough that they deserve some special atten-
tion. Suppose both the input beam g and the desired output beam Q have
radial symmetry. In this case the phase function ¢ will also have radial
symmetry, and we can replace our two-dimensional Fourier transforms
with Hankel transforms (see Sec. II.C in this chapter). The theory of
Hankel transforms shows that our beam shaping problems can be phrased
as follows.
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Given a function g(§), a function Q(«), and a parameter 3, find a
function ¢(&) such that

Gla) = 2n | e(@)6e ™ Onag) de (391a)
0
satisfies
2
G()f =T 0(a/5). (391b)

We already know that a lens designed using the first-order term in the
stationary phase approximation gives the same lens as one designed using
geometrical optics. Since radially symmetric problems are special cases of
the two-dimensional case, if we design a radially symmetric lens using
the large [ limit, we should get the same lens as when we design it using
geometrical optics. We conclude that the function ¢(£) can be obtained by
using the techniques described in our section on the geometrical theory
of beam shaping. Once we have obtained this function, we can use
Eqgs. (391) to see how our system performs with a finite value of 3. To
carry this out in practice, we have used ODE solvers in order to compute
the function ¢, and to perform the integration in the definition of the Hankel
transform.

E. The Continutity of ¢

We have seen that the first term in the method of stationary phase is iden-
tical to the results obtained using geometrical optics. In order for us to know
how well the geometrical optics approximation is working, it is necessary to
understand the next order term in the stationary phase approximation. We
discussed the higher-order terms in the method of stationary phase in Sec.
I11. There we saw that if the functions ¢ and g are infinitely differentiable,
then the next order term in the method of stationary phase is 1/ times the
size of the first term. However, if the third derivative of ¢ (or g) are dis-
continuous, then the next order term will only be 1//3 times smaller than
the first-order term. If ¢ has a discontinuity in a lower derivative, we get
even worse convergence.

We now consider what class of functions Q(«) will lead to disconti-
nuities in the phase function ¢(§) designed by using geometrical optics. We
will assume that the function 7(£) is smooth (such as a Gaussian). Equations
(384) show that the derivative of ¢ has the same continuity properties as the
function «(§). If we take the derivative of the first of Eqs. (384) with respect
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to & we find

dQ [do\? o\ di
(e (%) o) =g (392)

We see that if the function Q(a) has a discontinuous derivative at a
point o = «(&) where I(§,) # 0, then this will lead to a discontinuity
in the second derivative of o with respect to &, and hence to a discontinuity
in the third derivative of ¢. It follows that discontinuities in the derivatives
of Q or I will slow down the convergence towards the geometrical optics
limit.

Note that we excluded the case where the discontinuity in Q occurs at
a point where [ vanishes. In this case we must have da/d¢ = 0, and when we
look at our expression for the second derivative of o we find that it does not
have a discontinuity. Similar arguments hold for the case where Q itself is
discontinuous at a point where / vanishes. A very important example of this
is the case where one turns a Gaussian profile into a flat-top beam. In that
case the phase function is infinitely differentiable, even though the function
O(«) has a discontinuity in it. This is because the discontinuity in Q occurs
as £ — oo, and hence at a point where I(£) = 0.

For the case where the incoming distribution 7(£) is a Gaussian, we see
that discontinuities in the first derivative of Q will lead to discontinuities in
the third derivative of ¢, unless the discontinuity in Q occurs at an extre-
mity. By an extremity we mean a point where the rays reaching this point
have come from points infinitely far off the axis.

F. One-Dimensional Examples

In order to illustrate the principles of beam shaping a computer code was
written that allows us to compute the function ¢ as well as the effects of
using a finite value of (. In these examples we calculate

G(a) =J g(£)eM¥O=0) g (393)

—00

by using an ODE integrator. When an analytical expression for ¢ cannot be
found, we compute ¢ with the ODE integrator as we are computing the
integral. We output the quantity

D(a, ) = 2%‘ G, (394)
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e (395)

If the effects of diffraction are negligible, the function I'(«, §) should be very
close to Q(a).

We could have used a code that computed the function ¢ using the
technique described in the section on geometrical beam shaping, and then
fed this input into an FFT for computing the effects of a finite value of .

In all of the examples we present we will use the function

g = (396)
and hence
16) = €. (397)

Example 14 Turning a Gaussian Into a Flat top We want to turn the
output beam into a flat top with

Q(a) =1 for |a] < 1 (398)
Q(a) =0 for |a| > 1. (399)

We have already considered this example in our section on geometrical
beam shaping, where it was shown that the function ¢ is given by

2 T 2
56 === (€5 etl©) +1e¢ -1). (400
We will be able to see the effects of having a finite value of 3. Figure 5a
shows plots of I'(a, 3) for various values of 5. We see that for § =2 the
answer does not look at all like a square pulse, while for § = 32 the answer
is starting to look very good.
Figure 5b shows a plot of the function ¢(¢).

Example 15 A Polynomial Output—I We will now let the output beam be
a polynomial that has a hump in it.
O(a) = (1 —a?)(a® + ) for |a] < 1, (401)

Q(a) =0 for |a| > 1. (402)
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Figure 5 (a) The intensity distribution for different values of (3 for the problem of
turning a one-dimensional Gaussian into a flat-top beam (Example 14). (b) The
function ¢(§) that accomplishes this exactly in the geometrical optics limit.
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The constant A is easily computed to be

_Isym
44206

(403)

We will choose 6 = 1, for this example. Once we know the constant 4, we
use the ODE solver to compute the function ¢ and the function I'(a, 8) for
various values of 3. Figure 6a shows plots of I'(«, 3) for various values of .
Once again, the results are not good for § = 2, but get progressively better
as we increase the value of 5. A careful analysis of the data shows that the
relative error

(@, ) = Q(a)

r
elon ) = =G, (404)

is going to zero like 1/ everywhere except right at the endpoints o = +1.
Figure 6b shows a plot of the function ¢(¢).

Example 16 A Polynomial Output—II This example is the same as the
last example except that we have chosen a value of § = 0.25 in the function
QO(«). This causes the function Q to have two humps in it. Figure 7a shows
plots of T'(«, 8) for varous values of 3, and figure 7b shows a plot of the
function ¢. The relative error is dying down faster than 1/ 3% almost every-
where. Once again right at the ends (o« = £1), we do not get this behavior,
and in the middle (« = 0) the convergence is somewhat slower than 1/ 3.
The slow convergence at this point does not appear to be illustrating any
fundamental principle, but appears to go away if we choose a large enough
value of S.

Example 17 A Triangle Function

0(a) = 1 — |a] for || < 1, (405)
0(a) = 0 for |a| > 1. (406)

This discontinuity in the derivative of the function Q(a) at a =0
causes the function ¢ to have a discontinuity in its third derivative. Figure
8a shows plots of the function I'(«, 8) for various values of 3. At the point
a = 0 the convergence towards the function Q(«) can be seen to be going
like 1/+/3. Figure 8b shows a plot of the function ¢.
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Figure 6 (a) The intensity distribution for different values of 3 for the problem of
turning a Gaussian into the output Q(a) = (1 — a?)(1 + a?) for |o| < 1, Q(a) =0
for || > 1. (b) The function ¢(&) that accomplishes this in the geometrical optics
limit.
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Figure 7 (a) The intensity distribution for different values of 3 for the problem of
turning a Gaussian into the output Q(a) = (1 — o?)(1/4 4 o?) for || < 1, Q(a) = 0
for |a| > 1. (b) The function ¢(&) that accomplishes this in the geometrical optics
limit.
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Figure 8 (a) The intensity distribution for different values of § for the problem
of turning a Gaussian into a triangle function Q(a) =1 — |¢] for |a| < 1, Q(a) =0
for || > 1. (b) The function ¢(&) that accomplishes this in the geometrical optics
limit.
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Example 18 A Stairstep Function—I We now consider the case where
QO(«) is a stair step function.

O(a) =~ for |a] < 1/2, (407a)
Olay=1for 1/2 < |of < 1, (407b)
O(a) =0 for |a| > 1. (407¢c)

In this example we choose v = 3/4. The discontinuity in the function Q at
a = +1/2 causes the function ¢ to have a discontinuity in its second deri-
vative. Figure 9a shows plots of the function I'(«, 3). The convergences
towards the solution Q(«) is extremely slow. Figure 9b shows a plot of
the function ¢.

Example 19 A Stairstep function—II This is the same as in the last example
except we choose the parameter «y in the function Q to be equal to zero. This
causes the function ¢ to have a discontinuity in the first derivative. Figure
10a shows plots of the function I'(«a,5). We see that the convergence
towards Q(«) is extremely slow in this case. Figure 10b shows a plot of ¢.

G. An Axisymmetric Example

In our section on geometric beam shaping we considered the problem of
turning a circular Gaussian beam into an axisymmetric flat-top beam. In
this case the input beam g(&, n) is given by

glem =e T, (408)
and the desired output is given by

O(x,y) =1 for x> +y* < 1, (409)

O(x,y) =0 for x>+ > 1. (410)

The radially symmetric beam shaping equations give us the normal-
ization constant

A=1. (411)

The phase function is given by
o(r) = J V1 —e € de, (412)
0

where ¥ =& + 772. In order to analyze the effects of diffraction we
compute the radially symmetric Fourier transform. In our section on math-
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Figure 9 (a) The intensity distribution for different values of 3 for the problem of
turning a Gaussian into a step function Q(a) =3/4 for |a| < 1/2, Q(a) =1 for
1/2 < |al < 1, Q(a) =0 for |a| > 1. (b) The function ¢(&) that accomplishes this
in the geometrical optics limit.
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Figure10 (a) The intensity distribution for different values of 3 for the problem of
turning a Gaussian into a step function Q(a) =0 for || < 1/2, Q(a) =1 for
1/2 < |a| < 1, Q(a) =0 for |a| > 1. (b) The function ¢(§) that accomplishes this
in the geometrical optics limit.
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Figure11 (a) The intensity distribution for different values of 3 for the problem of
turning a radially symmetric Gaussian into a radially symmetric flat-top beam. (b)
The function ¢(&) that accomplishes this in the geometrical optics limit.
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ematical preliminaries, we showed that this can be done using the Hankel

transform.
G(a) = 27TJ P01y (afr)g(r) dr. (413)
0
We are interested in the normalized irradiance of this function.
47'('2 2
o, B) = F|G(0‘)| - (414)

If the effects of diffraction are negligible, then the function I'(«, 3) should be
nearly equal to Q(«).

Figure 11a shows a plot of I'(«a, 8) for various values of 3. We see that
the results are quite similar to the one dimensional case. Figure 11b shows a
plot of the function ¢.
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Gaussian Beam Shaping: Diffraction
Theory and Design

Fred M. Dickey and Scott C. Holswade
Sandia National Laboratories, Albuquerque, New Mexico

I. INTRODUCTION

This chapter describes a diffraction-based method for converting single-
mode Gaussian beams into beams with uniform irradiance profiles. The
design is based on a Fourier transform relation between the input and output
beam functions. This solution can be obtained using geometrical optics
methods. However, the diffraction approach introduces a parameter that
contains the product of the widths of the input and output beams. This
parameter is a significant part of the physical optics solution. The efficacy
of the solution is shown to depend on this parameter. The quality of the
solution improves asymptotically with increasing value of the parameter.

Many experiments and industrial applications require a laser beam
irradiance that is nominally constant over a specified area. Such applications
include laser/material processing, laser/material interaction studies, optical
data/image processing and lithography. In many cases it is desirable, for
obvious reasons, that the beam shaping operation conserves energy.

The multifaceted integrator approach to laser beam shaping is espe-
cially suitable to laser beams with highly irregular (multi-mode) irradiance
distributions (1,2). The number and size of the facets is selected to accom-
plish the required integration or, equivalently, averaging. Doherty (3)
has treated the problem of irradiance mapping for laser beams with radial
symmetry and regular irradiance distributions. Dickey and O’Neil (4) give
a general formulation of the multi-faceted beam integrator problem and
introduce a configuration that minimizes deleterious diffraction effects.
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For single-mode beams with a Gaussian profile it is possible to map
the beam into a uniform intensity profile with steep skirts. This mapping can
be accomplished with simpler optics that is more flexible with respect to
scaling and does not have the interference patterns inherent in multi-faceted
beam integration. Several authors address the problem of mapping a
Gaussian beam into one with a uniform irradiance distribution. The earliest
paper known to the authors that addresses the lossless shaping of a single
mode laser beam is the paper by Frieden (5). Lee (6) employs an iterative
technique to design a phase filter to convert a Gaussian beam into a more
uniform irradiance distribution. Veldkamp (7,8) uses an iterative technique
to design binary gratings to accomplish the profile shaping. Aleksoff et al.
(9) uses the geometrical optics approximation to develop a holographic
system that maps a Gaussian beam into a rectangularly shaped beam with
uniform amplitude and phase. Kosoburd and Kedmi (10) use geometrical
optics to design a diffractive system that maps Gaussian beams into beams
with uniform irradiance. Eismann et al. (11) applies the Gershberg—Saxton
algorithm, or equivalently, phase retrieval to synthesize a two element design
that produces a beam with uniform amplitude and phase. In a recent paper,
Golub et al. (12) present numerical and experimental results for a diffractive
beam shaper based on a geometrically derived phase function.

In this chapter, we give a solution to the problem of mapping a
Gaussian laser beam into a beam with uniform irradiance profile. The con-
figuration analyzed exploits the Fourier transform properties of lenses. That
is, the output optical field is the Fourier transform of the input optical field
and a phase function. This configuration has the advantage of being able to
change the output size or the working distance by changing the transform
lens. In Sec. II we define the general problem of converting a Gaussian beam
into a beam with uniform irradiance and give a solution to the problem.
Bounds set by the uncertainty principle are also discussed in this section.
The problem of creating a collimated beam, a beam with both a uniform
irradiance and a uniform phase, is addressed in Sec. I11. Again, the uncertainty
principle has implications. It is used to define a generalized Rayleigh range for
shaped beams. In Sec. I'V considerations associated with designing a shaping
element are discussed. Sensitivity to alignment and scaling errors are treated in
Sec. V. Section VI discusses the application of the design methodology to a
particular problem. In Sec. VII we present the results of the design and
testing of a prototype system. A summary of the chapter is given in Sec.
VIII. This chapter is based on the author’s papers. (13,14).

Il. THE ANALYTICAL SOLUTION

The general beam shaping problem is shown schematically in Fig. 1. In the
figure the beam to be shaped enters the proverbial black box from the left
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and exits on the right, diffracting to the design irradiance pattern. The black
box may contain a single optical element or a combination of several optical
components of differing types such as lenses, mirrors, prisms, diffractive
optics and holograms. One approach to solving a beam shaping problem
would be to assume an optical configuration and develop a solution
around this configuration. An example of this approach would be iterative
techniques that provide a solution for a single element diffractive optic. A
more general approach would be to obtain a general solution for a shaping
function, amplitude and phase, using diffraction theory, and then develop
an optical design realizing the shaping function. This approach is usually the
most difficult. An approach somewhere between the two is commonly what
is taken. Although a given solution might be realizable with a single optical
element, it is frequently the case that a more versatile, more practicable, and
less expensive design is obtained using multiple elements.

A. Optical Configuration

Our approach to lossless beam shaping, illustrated in Fig. 2, consists of a
phase element in conjunction with a Fourier transform lens. The optical
field at the focal plane of the transform lens is proportional to the

Target plane

|
. 1
L
Incoming Qptical Outgoing "
beam system beam |
s
L
|

Figure1 Schematic of the beam shaping problem.

7 ]
] O v
A FH\\\ y
f/ rd Target
Transfarm Flane
Phase Element
Element

Figure 2 Fourier transform beam shaping system. (From Ref. 13)
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Fourier transform of the product of the input optical field and phase of the
phase element (15). This configuration has several advantages. The phase
element can be changed to control both the scale and shape of the output
irradiance. The transform lens can be changed to modify the working dis-
tance, with a corresponding change in scale of the output. Finally, although
the phase element and transform lens could be designed as one optical
element, it is generally easier to design and fabricate the two components
if their functions are kept separate.

It should be noted that this configuration is more general than it
might first appear. Any solution that could be obtained using a Fresnel
integral can be obtained using the Fourier transform system of Fig. 2.
This can be seen from the fact that the Fresnel integral can be written
as a Fourier transform of the product of the input aperture function
and a pure (quadratic) phase factor (see Goodman (15), Chapter 4,
Eq. (4-10)). The quadratic phase function becomes part of the beam shaping
element.

B. Minimum Mean Square Error Formulation

Given the configuration of Fig. 2, the problem is to design the phase ele-
ment. The direct approach would be to solve for the phase function that
minimizes the mean square difference between the desired irradiance and the
irradiance produced by the phase element. That is, we want to find ¢ that
minimizes an integral of the form

R= j\|%[<2/ﬁ>”2e-fe"ﬂ|2 — (1/a)"* rect(f/a)[* df, (1)

where & denotes a Fourier transform operation, f denotes the correspond-
ing frequency domain variable, « defines the size of the output, and the
problem is scaled to a unit width (1/e*) Gaussian beam function. Here,
the problem is formulated in one dimension, which is appropriate to the
separable problem of converting a circular Gaussian beam into a uniform
beam with a square cross section. In general, a single variable will be used to
represent a one- or two-dimensional variable. Unfortunately, we were not
able to obtain a global solution to Eq. (1). We were able to obtain solutions
to the problem using the method of stationary phase. Before presenting the
stationary phase solution, it is interesting to discuss the solution to a related
problem of requiring both the amplitude and phase of the output to be
constant over the region of interest and zero elsewhere.

The solution to the separable uniform amplitude and phase
problem can be obtained by determining the phase ¢ that minimizes

Copyright © 2000 Marcel Dekker, Inc.



the functional

R= J\g[(2/ﬂ)l/2€_‘”zei‘°>] = (1/a)' rect(f /o) df

=2-2Re J 32/ V) Pe (1)) rect(f /) df . (2)

Note that this equation differs from that of Eq. (1) in that it involves the
differences of fields (complex) functions, while Eq. (1) is the difference of
intensities (magnitude squared) functions. Thus, the problem described in
Eq. (1) is less constrained since the phase of the output is a free parameter.
This allows for a broader range of solutions. In Eq. (2) the input Gaussian
function and the output rect function are normalized to unit energy. This
insures that the mean square difference in Eq. (2) depends on the variation
in the shape of the input and output functions and not on any relative
amplitude difference between the two functions. As a result, only the inte-
gral of the cross terms needs to be evaluated, since the normalization forces
the other two integrals to unity.

The solution to Eq. (2) is readily obtained by applying Parseval’s
theorem and expanding the integrand. Integrating the magnitude squared
terms gives

R—=2-2Re J(za/ﬁ)‘/%-"é sinc(ax)e ™ dx. 3)

Here, Re z denotes the real part of z. Clearly, R is minimized if the integral is
maximized. This is obtained if ¢ is set equal to the phase of the sinc function.
Since the phase of the sinc function is a binary function with values of 0 and
7, the optimum phase function is a binary function. All that remains is to
determine the value of « that maximizes the integral in Eq. (3) with ¢ set
equal to the phase of the sinc function. This can be evaluated numerically
to give a = 0.710. The beam profile irradiance for this solution is shown in
Fig. 3. This is just the optimum solution, in the sense of Eq. (2), of the
problem posed by Veldkamp (7). It is interesting to note that the solution is
not as flat as might be expected. As mentioned above, o determines the size
of the shaped output. In obtaining the minimum mean square error solu-
tion, we have let the size of the output be a free parameter. The value
a = 0.710 corresponds to small 3 discussed in the next section. If the output
beam size is allowed to increase, one can get a flatter looking output beam.
However the mean square error between the shaped beam and the desired
output is larger than that of Fig. 3. A careful inspection of Eq. (3) shows
that the mean square error increases to a maximum with increasing « (out-
put beam size). This is due to the fact that, with respect to Eq. (1), Eq. (2) is
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Figure 3 Beam irradiance profile (right half) for the optimum solution of Eq. (2).
(From Ref. 13)

overly constrained. That is, in Eq. (2) both the phase and amplitude of the
output are required to be uniform, whereas only the irradiance of the output
in Eq. (1) is required to be uniform. It can also be noted that this solution
corresponds to a value of R = 1.199, which is a significant fraction of the
maximum of R = 2.

C. The Uncertainty Principle

There are fundamental constraints on the on the beam shaping problem that
can be traced to electromagnetic theory. It is difficult to develop constraints
on a problem without a degree of specificity. However, the uncertainty
principle of quantum mechanics or, equivalently, the time-bandwidth
inequality associated with signal processing can be applied to the beam
shaping configuration defined by Fig. 2. The uncertainty principle is a con-
straint on the lower limit of the product of the root-mean-square width of a
function and its root-mean-square bandwidth (16,17),

AN, > 1 (4)

YT 4r

The respective widths are defined by

. [P s 5
e [ P avar v

oo J oo
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where

J J x[u(x, )| dx dy

¥ = T : (6)
J lu(x, y)[* dx dy
and
J (v —0)°|U(vy, v,)|* dvy dv,
(A,) =7 ; (7)
J J |U(vx,vy)|2dvxdvy
where

J J Ux| U(Um ’Uy) |2 de d’t}y
T ~ )

J J |U(vy, vy * dv, dv,

In the last two equations upper and lower case letters denote the field
function and its Fourier transform, respectively. The uncertainty principle
stated in Eq. (4) is obtained from Eq. (5) through Eq. (8) using the
Cauchy—Schwarz inequality, Parseval’s theorem, and the Fourier transform
correspondence Ju/0x < i27v.

The field distribution at the focal plane of an ideal lens is proportional
to a Fourier transform. The Fourier transform variable is related to the
physical variables by the equation (15)

l
X

)§_f )
where f is the focal length, X is the wavelength, and x' is the coordinate in
the focal plane. Using Eq. (9), Eq. (4) can be written as
AA 1
> —.
N T 4r

v =

©)

(10)

Further, converting the widths on the left side of the above equation to a
1/ ¢* radius for the input Gaussian beam, a full radius for the shaped beam,
and multiplying both sides by 2v/27 Eq. (10) becomes

2*/_’0y0>069 (11)
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where r is the Gaussian beam radius and y, is the shaped profile radius. The
left-hand side of the above inequality is the 3 defined in Sec. III1.D. It should
be noted that this result is strictly true for separable input and output beam
functions. In fact, for the non-separable case the constant on the right-hand
side would be greater because the radii are averaged with respect to the
orthogonal coordinate.

Applying the uncertainty principle to the beam shaping problem
requires some thought. As derived above, the inequality is strictly applicable
to the product of the input and output beam radii. However, it does prohibit
focusing a beam to a radius smaller than the lower limit given by the
inequality. It is reasonable to expect that good shaping results would not
be obtained for beam radii determined by the equality in Eq. (11). In fact, it
is expected that good shaping would not be obtained unless the equality was
exceeded by a factor of 3 or more. This is supported by the fact that the
equality in Eq. (4) obtains only when the input and output beam are both
Gaussian beams that are Fourier transform pairs (16). Further, since the
beam shaping problem addressed here can be expressed as a convolution in
the output plane of the Fourier transform of the Gaussian input beam and
the Fourier transform of phase function, one would expect that the uncer-
tainty principle would also be an indication of the ability to achieve steep
skirts on the edges of the beam profile. Finally, since the constant on the
right-hand side of Eq. (11) would be greater for a non-separable function it
would be more difficult to produce flat circular beams with steep skirts than
it would be to produce corresponding beams with a square cross section.
These results are compatible with our numerical modeling of the beam
shaping problem, see Sec. IV.

D. Stationary Phase Solution

Solutions to the problem defined by Fig. 2 and Eq. (1) can be obtained by
application of the method of stationary phase. Before giving the stationary
phase solutions, we present a brief introduction to the one-dimensional
stationary phase formula (18,19). Stamnes (20) provides an extensive
discussion of the method of stationary phase and its application to diffrac-
tion problems. Walther (21) applies the method of stationary phase to the
wave theory of lenses. A treatment of stationary phase is given in Chapter 2.

The method of stationary phase gives an asymptotic approximation to
integrals of the form

1(9) =j F(x)eP) g, (12)

a
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where 3 is a dimensionless parameter. The first term in the asymptotic phase
approximation to the integral in Eq. (12) is given by

o 2 1/2
L(8) ~ el{ﬁo(6)+w/4}f(c) {WZT(C)J 7 (13)
where primes denote derivatives,
u=signp”(c), (14)
and ¢ is a simple stationary point defined by
¢'(c) =0, ¢"(c) #0. (15)

Equation (13) is commonly referred to as the stationary phase formula.
Similar results are obtained in two dimensions with ¢”(c) replaced by the
Hessian matrix for ¢.

The essence of the beam shaping problem is to equate |I(,(ﬂ)\2 with the
desired irradiance in the output plane of Fig. 2. That is, the magnitude
squared of the right-hand side of Eq. (13) is equal to the desired output
irradiance. Using this condition with Eq. (15) leads to a second order differ-
ential equation for the beam shaping phase function ¢(x). The details
of obtaining the explicit form of the differential equation from Eq. (13)
and Eq. (15) are rather tedious (25) (see Chapter 2). Care must be taken
with respect to the absolute value of ¢” in the denominator of Eq. (13). This
condition requires that the phase ¢(x) is a convex function, a function
whose second derivative is either positive or negative everywhere. This
turns out not to be a problem for the case of mapping a Gaussian into a
rect function. This can be seen from the geometrical optics representation of
the beam shaping problem illustrated in Fig. 4. In the figure, the input beam
consists of collimated rays whose density is accurately scaled to be propor-
tional to a Gaussian irradiance profile. These rays are bent, in the shaping
plane, to form a uniform irradiance distribution in the output plane. Near
the shaping plane one can form a phase front for the converging beam by
integrating the reciprocal of the slope of the rays (wave normals). The
curved line in the figure represents the phase front. It can seen that the
slope of the phase front, derivative of the phase function, is a monotonic
function giving a phase function with a positive (or negative) second deri-
vative. It may be noted the construction of Fig. 4 provides an algorithm for
a geometrical optics solution to the beam shaping problem (9). When the
phase of the phase function is not a convex function over the entire input
beam the problem becomes more difficult. In this case, a solution to the
problem can be obtained by dividing the input beam into regions over which
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Figure4 Geometrical optics representation of the Gaussian to rect function beam
shaping problem.

the phase function is convex and combining the solutions for these regions
in a secamless manner. In practice, this may be a very difficult problem.

A very simple and useful application of the method of stationary phase is
outlined in Appendix A. In this appendix, we treat the problem of the lossless
mapping of a uniform amplitude and phase beam into a uniform irradiance
profile at the focal plane of a transform lens using a phase element as shown in
Fig. 2. In this case, the determination of the differential equation is quite
simple. The solution for the phase element is just a quadratic phase function,
a thin (ideal) lens. This problem provides the diffraction theory basis for the
“fly’s eye lens” beam integration system (22,23) (see Chapter 7). If a small
array of these elements were placed before the Fourier transform lens, the
uniform patterns for each phase element would be superimposed in the
focal plane of the Fourier transform lens. This solution is very
closely related to the problem if Fourier analysis of chirped or linear frequency
modulated signals occurring in synthetic aperture radar system theory (24).

In two dimensions, the general form of the equation to be solved is

Floww) == || semexplitolen - o —no)) dean, (16

o0 J —00

where £ = x/r; and n = y/r; are normalized input variables with r; defining
the length scale, and w, = x;/r; and w, = y,/r; are normalized output vari-
ables in the focal plane of the Fourier transform lens with r, defining the
length scale. The stationary phase solution improves asymptotically with
increasing dimensionless parameter 5 = 2nr;Ry/f A where R, is the size of
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the output beam, A is the optical wavelength and f'is the focal length of the
transform lens.

The stationary phase evaluation of integrals of the type given by Eq.
(16), generally, leads to second order partial differential equation for the
phase function ¢. The resulting partial differential equation can then be
solved for ¢, subject to an energy boundary condition determined by
Parseval’s theorem. The partial differential equation reduces to a second
order ordinary differential equation for the separable and circularly sym-
metric problem. The optical element is then designed to realize G¢.

The stationary phase evaluation of Eq. (16) allows for the mapping of
arbitrary single mode laser beams into arbitrary irradiance profiles using the
system in Fig. 2. However, some irradiance profiles may be more mathema-
tically difficult to realize. Romero and Dickey (25) (see Chapter 2) have
obtained solutions for the separable problem of converting circular
Gaussian beams to uniform profiles with rectangular cross-sections and
the problem of converting circular Gaussian beams to uniform beams
with circular cross-sections.

For a circular Gaussian beam input, the problem of turning a
Gaussian beam into a flat-top beam with rectangular cross section is separ-
able. That is, the solution is the product of two one-dimensional solutions. 3
and ¢(§) are thus calculated for each dimension. The phase element will then
produce the sum of these phases (3.¢.(x) + (,6,(»)). The corresponding
one dimensional solution for ¢ is (25)

NG

0(€) =5 €erf(€) + exp(—€) — 5, (17)
where
E=Y2 o 2V
o ro

and ry = 1/e* radius of the incoming Gaussian beam.
The solution for the problem of turning a circular Gaussian beam into
a flat-top beam with circular cross-section is (25)

T (¢
00 =57 | VT=ep(=dp, (18)

where

ro

and r = radial distance from the optical axis.
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As previously mentioned, the quality of these solutions depend
strongly on the parameter 5. For the two solutions given in Eq. (17) and
Eq. (18), 5 is given by

2 V 27'(')’0_)/0
= 1
S (19)
where:

rg =1 /62 radius of incoming Gaussian beam,
yo = half-width of desired spot size (the radius for a circular spot, or
half the width of a square or rectangular spot).

Examples of the dependence on (3 will be given later.

E. Positive and Negative Solutions

An interesting property of the configuration in Fig. 2 is that if ¢ is any even
function solution then —¢ is also a solution. If the input beam and the
output beams are even functions then ¢ will be an even function. This is
easily demonstrated in one dimension and the development is readily
extended to two dimensions. In simplest form the input/output optical fields
in Fig. 2 are related by the Fourier transform

G(w) = [ f(e e ax, (20)

where G (w) is the output field and f(x) is the input field. In this equation the
integrand can be expanded to give

G(w) = | f(x)[cos Bp(x) + isin B (x)][cos wx — isinwx] dx,
= | f(x)cos B¢p(x) coswx dx,

= | f(x)cos[—Bp(x)] cos wx dx. (21)

The equivalence of the positive and negative solutions follows from the fact
that the odd terms in the integrand integrate to zero and the cosine function
is an even function. This result has practical implications for system design.
The positive solution produces a beam that converges to a small diameter
after the output plane, and the negative solution gives a beam that converges
to a small diameter before the output plane. It should be noted that this
result is independent of the type of solution method such as the method of
stationary phase. It depends only on the symmetry assumptions stated at the

Copyright © 2000 Marcel Dekker, Inc.



start of this section. However, the convexity problem discussed following
Eq. (15) is related in that it allows for both a positive and a negative
solution.

F. Quadratic Phase Correction

The solutions described in Sec. I1.D assume that the input Gaussian beam
has a uniform (constant) phase at the beam shaping element. For a
Gaussian beam this condition is obtained at the beam waist, and it is not
convenient or practical to always locate the beam waist at the shaping
element. One solution is to build into the shaping element a phase conjugate
to the input beam phase. A more practicable solution is to exploit the fact
that the Gaussian beam phase causes a shift in the location of the output
plane. That is, the desired profile is located a distance from the focal plane of
the transform lens. There is also a slight magnification associated with the
shift of the output plane. These assertions can be proved using the Fresnel
integral and the general form for Gaussian beams.
Gaussian beams propagate with a phase function given by (26)

f(x,y) = o), (22)

where o and ~y are functions of the distance from the beam waist, and v = 0
at the beam waist. The solutions in Sec. II.D assume that v =0 and the
output is the Fourier transform of the product of a Gaussian and the beam
shaping phase function given by

U(xyp,yy) = Ak CG+r7) ” o) 10 i Om/ N +331) e gy (23)

where x, y are the input coordinates and x;, y, are the output coordinates in
the focal plane of the transform lens. We can arrive at an equivalent expres-
sion by applying the Fresnel integral to the field after the lens. If the lens
function is given by

by(x, y) = e PN (24)

the Fresnel integral gives

iAz
% e {(k/2)(xxo+v0) gy dy, (25)

ikz
Ulxg, ) = S k00 117) J J () 4186 (i 22)— (i /21 )| (+0%)
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where x,, y, are coordinates in a plane a distance z from the transform lens.
If z = z, is the solution to

k n k
1T T
then Eq. (25) reduces to

=0, (26)

ikz, ) . s ) - —
U(xo,70) = ;\7 o (K/220) (x3+75) ” o047 40 ik /o) (xxo+7v0) gy dy.
o

(27)

The integral in Eq. (27) is a scaled version of that in Eq. (23). Thus both
equations produce the same intensity pattern except for scaling and ampli-
tude factors (phase factors do not effect the irradiance pattern).

lll. COLLIMATED UNIFORM IRRADIANCE BEAMS

A drawback of existing beam shaping systems is the limited depth of field. The
uniform profile appears only at the target plane, and the profile quickly
degrades beyond it. This is due to the fact that the configuration of Fig. 2
cannot produce a beam with both a uniform phase and a uniform amplitude
without including a loss mechanism (amplitude control). This can readily be
seen from the Fourier transform relation between the field in the output plane
and the field just before the transform lens (after the shaping element). For
example, for the one-dimensional case, if the beam has a uniform amplitude
and phase in the output plane it must be a sinc function in the input plane. A
desirable extension would be to create a uniform beam that could propagate
for considerable distances. In other words, besides a uniform profile at the
target plane, what is desired is a uniform phase front (see Theorem 11 in Sec.
I1.B of Chapter 2). The uniform profile would then continue to propagate
subject only to diffraction effects due to its finite size. In addition, applications
such as optical lithography, nonlinear optics, and optical data (image) proces-
sing may require beams with uniform phase as well as amplitude.

A. Conjugate Phase Plate

A uniform phase and amplitude beam can be obtained by adding a con-
jugate phase plate at the output plane of the beam shaping system as shown
in Fig. 5. The phase of the conjugate phase plate is designed to cancel the
phase of the uniform irradiance beam at the output plane of the beam
shaping optics, producing a collimated beam to the right of the output
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Figure 5 Optical system for creating a uniform phase beam. (From Ref. 14)

plane. Given the properties of the input beam and the solution for the
shaping element, it is theoretically possible to compute the phase of the
conjugate phase plate. However, in some cases, it might be more practicable
to design the beam shaping system and then measure the phase of the
shaped beam. The phase plate would then be designed to give the conjugate
of the measured phase.

In Appendix B, we show that a beam obeying the scalar wave equation
has a minimum root-mean-square (r.m.s.) radius at a plane of uniform
phase, and the beam radius as a function of z (the beam axis coordinate)
is a quadratic function given by

(Ap)* = a+ ¢z’ (28)

where a is the minimum radius squared, (Apmin)z, in the plane z = 0. It can
be seen from Eq. (28) that minimizing ¢ minimizes the spread of the beam in
the region of the plane of uniform phase. Further, it is shown, using the
uncertainty principle, that the Rayleigh range for beams obeying the scalar
wave equation is constrained by

4ra _ 4m(Apmin)’

The Rayleigh range in this equation is a generalized Rayleigh range
defined as the distance (measured from z = 0) over which the r.m.s. beam
radius increases by a factor of v/2. Equation (29) is just a quantitative
statement of the intuitive concept that to obtain a beam with a large
depth of field one wants a large beam width with uniform phase. Since
the components of the vector wave equation obey the scalar wave equation,
these results can be extended to include solutions of the vector wave
equation.
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Figure 6 Relay system for extending the depth of field of uniform irradiance
beams. (From Ref. 14)

B. Relay Optics

In many applications, especially high-power applications such as material
processing, it is not desirable to have a phase plate at the uniform irradiance
plane. A solution is to use relay optics to image the beam in the vicinity of
the output plane. A relay system for this purpose is illustrated in Fig. 6. The
relay optics configuration in the figure has the additional advantages that it
doubles the depth of field and can also be used to magnify the size of the
shaped beam. These advantages are, of course, obtained at the expense of
additional optics.

It should be noted that the relay system in Fig. 6 consists of a two-lens
afocal telescope, that is, the lenses are separated by the sum of their focal
lengths. A minimum of two lenses are required to image (relay) the output
plane while preserving the uniform phase profile. This can be seen from the
fact that an afocal telescope produces a collimated output beam when the
input beam is collimated. Another approach is to observe that each lens
produces the Fourier transform of the field at its front focal plane at the
back focal plane. The result is the Four transform of a Fourier transform,
which is effectively a Fourier transform followed by an inverse Fourier
transform with the coordinates reversed (15). The output beam is symmetric
about the relayed target plane, producing a greater distance where the beam
maintains the desired tangential dimensions.

IV. DESIGN CONSIDERATIONS
A primary design advantage of this lossless beam shaping technique is that

the designer can start with a desired target spot quality and determine the
optical system required, rather than designing multiple optical systems in the
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hope of producing an acceptable output. This is because the dimensionless
quantity 3 of Eq. (19) completely determines the quality of the spot at the
target plane. In other words, different optical configurations and wave-
lengths will produce the same target spot quality if they share the same
value of 8. Low values of § produce target spots with more rounded sides
and wider skirt regions, while higher values of 3 more closely approach the
geometric ideal of a uniform intensity profile with infinitely steep sides. As
Eq. (19) implies, the cost of increasing [ involves either increasing the size of
the Gaussian beam at the phase eclement, enlarging the target spot, short-
ening the focal length of the transform lens, or reducing the wavelength. By
considering the application and consulting plots of target quality versus g,
the designer can determine the minimum ( that will satisfy the needs, and
design the most economical system.

Figure 7 shows a standard layout for a beam shaping optical system.
For most design situations, the size of the target spot and the wavelength
will be determined by the application. The focal length of the transform lens
may also be determined by standoff or other considerations, although a
minimum focal length will maximize 3. The final variable is the Gaussian
beam radius at the shaping element. To achieve the desired (3, the beam size
should be expanded by an afocal telescope, as shown in the figure. With the
optical system designed for one target geometry, there are two methods
to produce additional target geometries. The first is to change the phase
element. With the same expansion and focusing optics, a system could thus
produce circular and rectangular beams of several sizes. It should be
noted, however, that different target geometries will vary (3, and hence
spot quality, as determined by Eq. (19). The second method involves
changing the focusing, or transform, lens while leaving the telescope and
phase element fixed. This change can vary only the target size, not the
geometry, but it has the advantage of maintaining a constant target spot
quality. The variation in the focal length changes the spot size proportion-
ally, and thus 8 remains constant.

n 71
b3 ) L
\\ T A T
Telescope Shabing Transform
Elemant Element

Figure 7 System optical layout. (From Ref. 13)
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Once a target spot quality is determined, the required phase profile
imparted on the beam by the phase element is then found by multiplying the
phase function of Eqgs. (17) or (18) by 8. This multiplication scales the phase
function to the particular geometry of the application. A telescope is then
designed to expand the beam to the required value. A transform lens of the
required focal length completes the system. The remainder of this section
treats the design considerations in more detail, and discusses additional
system configurations.

A. Target Spot Quality

Since 0 determines target spot quality independently of the circumstances of
the design, graphs of the beam shape versus particular values of (3 are useful.
The following simulations include system effects such as beam truncation
and lens aberrations. They were calculated for a CO, laser system
(A =10.6 um) with an f/42 to f/21 plano-convex lens. Aperture radii were
truncated at 2r( in these simulations, where r, was the 1 /62 radius of the
beam. Figure 8a shows a square target spot with 3 = 4. The profile is fairly
rounded. Figure 8b shows the square target spot with 8 = 8. The skirts of
this spot have narrowed considerably. Figure 8c shows the square target
spot with 3 = 16. The skirts of this spot have narrowed further. This system
design is beginning to approach the geometric ideal of a uniform profile with
infinitely steep sides. The square spot is a special case of the rectangular
spot. With a circular input beam, a rectangular output can be produced by
varying the (3 for each axis. For the case of a circular, uniform target spot,

Figure 8 Profiles of square and circular spot geometries. (a) Square profile, 5 = 4.
(b) Square profile, 5 = 8. (c) Square profile, 5 = 16. (d) Round profile, # = 8. (From
Ref. 13)
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Fig. 8d illustrates the profile for § = 8§ and 3r, truncation. This spot behaves
similarly to the square case as 3 changes. Unlike the square case, however,
the circular case exhibits noticeable ripple on the profile as the beam is
truncated to 2r.

B. Modeling System Performance

As was shown in Fig. 7, the optical system consists of the phase element and
three lenses, each of which can contribute aberrations. A complete way to
model system performance is thus desirable. Several optical design packages
now offer the ability to input surfaces with general aspheric profiles as
polynomial functions of x and y coordinates. For small values of 3, the
phase profile can be well approximated by varying the thickness of the
element. In other words, the phase element acts as a “thin” element for
small values of § (15). Some packages allow polynomial phase profiles to
be input directly. In either case, the phase functions are fit to a polynomial
with appropriate mathematical software, the polynomial multiplied by g,
and the phase element inserted into the design package along with the other
elements. After tracing a spot diagram with Gaussian apodization of the ray
weights, the package then calculates a diffraction-based point spread func-
tion for the system, which uses the ray map in the exit pupil. The point
spread function provides the diffraction response of the system for a point
object. A distant point object produces a planar input wavefront character-
istic of a Gaussian beam at its waist. Curvature in the input beam wavefront
can be modeled by moving the object point to the appropriate distance.
Wavelength variations in the input beam can be modeled with a poly-
chromatic spot diagram and point spread function.

A sufficiently robust design package can model effects due to lens
aberrations, beam truncation by optics, beam curvature, and alignment
and scaling errors. To avoid aliasing in the point spread function, the
spot diagram must sufficiently sample the exit pupil. For s on the order
of 16 or less, the phase profile varies fairly slowly, and most programs can
sample it sufficiently. As [ increases, however, the phase profile varies more
rapidly, and sampling becomes more problematic. However, it should be
remembered that [ is a measure of how well the system approaches the
geometric ideal. For high values of (3, therefore, the weighted geometric
spot diagram sufficiently models the system performance.

C. Telescope Considerations

As Sec. I1.F discusses, displacement of the input Gaussian beam waist from
the phase element produces a shift in the location of the output plane and a
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Figure 9 Combined expansion and transform functions in the telescope. (From
Ref. 13)

change in scale of the target spot. The telescope can thus be adjusted to shift
the target plane to a different location. The telescope can also compensate
for curvature in the input Gaussian beam. In this case it is adjusted to place
a beam waist at the phase element, with a corresponding slight change in
input beam size. Both adjustments should generally result in negligible
effects on  and target spot geometry.

Phase elements can be located either before or after the transform
element (15). This allows the expansion and transform functions to be com-
bined in the telescope, as shown in Fig. 9. In some situations, it may be
necessary to compensate for tolerances in the incoming laser beam diameter.
The phase element may then be located behind the transform element and
moved along the beam axis until the beam size matches the design size. This
movement will scale the target spot size, but 5 will remain constant.

D. Truncation Effects

For standard optical systems, the effects of truncation on Gaussian beams
have been reported in the literature (27). The truncation of the input
Gaussian beam by the circular apertures in a beam shaping system will
also affect the target profiles. For the square spot, no noticeable degradation
is seen for truncation down to 2ry,. As aperture sizes decrease, however,
further ripple becomes apparent. Figure 10 illustrates the effects of 1.5r
truncation on the square spot. For the circular spot, ripple becomes appar-
ent at 2r( truncation, as is shown in Fig. 11. It is interesting to observe why a
2r, circular aperture will affect a circular spot more than the square spot for
the same 3. For the circular spot, the edge-wave disturbances created by
the aperture are symmetric through the system and interfere constructively
at the target. For the square spot, however, the disturbances created by
a circular aperture are altered by the phase element in a non-symmetric
fashion, and thus do not all constructively interfere. This situation is related
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Figure 11 Round profile, § = 8§, apertures = 2ry. (From Ref. 13)

to diffraction by circular versus other apertures (27). For designs producing
square or rectangular spots, system apertures of twice the Gaussian beam
radius should provide good performance. For designs producing circular
spots, system apertures of three times the Gaussian beam radius will be
necessary to avoid ripple effects.

E. Positive and Negative Phase Functions

As discussed in Sec. I1.E, the phase function has two solutions, positive and
negative, for a given configuration. With reference to Eq. (1), ¢ is the phase
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delay suffered by a wave in passing through the phase element. This situa-
tion is analogous to the phase delays introduced by thin lenses (15). For a
positive phase function ¢, Eq. (17) and Eq. (18) show that the phase delay
will vary from zero at the optical axis to increasingly positive values as we
move away from the axis. This situation is the same as that for a negative
thin lens, and additional insight into the beam shaping system can be gained
by viewing the shaping element geometrically, as is illustrated in Fig. 12. The
target plane is the focal plane of the transform, or focusing, element and this
is where the desired target spot appears. For an element with a positive
phase function (a), the beam continues to decrease in size after the target
plane. Geometrically, the element has reduced the power of the optical
system and behaves much as an aberrated negative lens. For an element
with a negative phase function (b), the beam passes through a minimum
diameter before reaching the target plane. The element thus geometrically
behaves as an aberrated positive lens. In both cases, the spot at the target
plane will be identical. The positive phase function (a) has an advantage in
depth of field, since the wavefront through the system is closer to planar
than for the negative phase function (b). An analogous geometric explana-
tion is that the marginal rays for (a) have smaller angles than (b), thus
allowing a larger depth of field. Defocus of the target plane leads to devia-
tions in spot uniformity, and it is treated in the next section. Particular
applications may demand that the minimum beam size occur either before

Target
ul 1]
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Figure12 (a) Element with positive phase function acts geometrically as an aber-
rated negative lens. (b) Element with negative phase function acts geometrically as an
aberrated positive lens. The target plane is the focal plane of the final (transform)
lens. (From Ref. 13)
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or after the target plane. If there is a choice, however, the positive phase
function features the least sensitivity to defocus errors.

V. ALIGNMENT AND SCALING ERRORS

Unlike methods based on multifaceted integrators, this lossless beam shap-
ing method is sensitive to alignment errors and variations in the input beam
size. Figure 13 shows the effect of decentering the Gaussian beam on the
phase element by 0.1 ry along one of the element axes. For other elements in
the system, decentration is most important where it would move the beam
on the phase element. For example, decentration of the negative lens in
Fig. 7 would decenter the beam on the phase element and thus produce
the effects shown in Fig. 13. On the other hand, decentration of the
transform element would have a relatively small impact on the target spot
quality. Spot quality is also fairly insensitive to tilt of the phase element,
which acts much as a thin plate in this case.

Since the shaping element is designed for a particular input beam size,
which in part determines the scaling factor j, it stands to reason that devia-
tions from the design input beam size will affect the target spot. The follow-
ing cases show the degradation in the square target spot for the g = 8 design
of Fig. 8b, with a positive phase function. In Fig. 14a, the input Gaussian
beam size is 10% larger than the size used in the design. The target spot

Figure 13 Input beam decentered along element axis by 0.1ry, 3 = 8 case. (From
Ref. 13)
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Figure 14 Effects of deviations in input beam size from design values: (a) Input
beam 10% larger than design size. (b) Input beam 10% smaller than design size.
(From Ref. 13)

shows significantly raised edges. Figure 14b shows the target spot for an
input beam size that is 10% smaller than that used in the design. The edges
of the spot have rounded off. For many applications, this rounding effect is
less detrimental than that caused by the raised edges. Thus, if variation in
the input beam size is anticipated for systems with a positive phase function,
the element should be designed for a beam somewhere near the upper limit
of the size range.

Target plane defocus also affects the quality of the target spot for the
following reasons. The beam shaping system uses a lens to transform the
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input beam plus the phase function to the desired shape. The output spot
exists at the transform plane of the lens, which is also its focal point. In the
derivation of the phase element, the problem was to minimize the difference
between the desired irradiance at the target plane and that produced by the
system. There were no constraints on the phase of the beam at the target or
on the beam irradiance outside the transform plane. Since the phase is
generally not uniform at the target plane, the shaped beam will not display
the symmetry about the target plane characteristic of Gaussian beams at
their waist, see Sec. III. The irradiance of the beam will thus deviate from
the desired shape when the target plane is moved away from the focal point

Figure 15 Defocus effects: (a) Target plane defocused by + f/50. (b) Target plane
defocused by —f/50. (From Ref. 13)
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of the transform lens. The following cases apply to the 3 =8 design of
Fig. 8b, with a positive phase function. Figure 15a shows the effect of
moving the target plane away from the transform lens by f/50, where f is
the focal length of the lens. The spot decreases in size, increases in average
irradiance, and the edge areas rise relative to the center. Figure 15b shows
the effect of moving the target plane toward the transform lens by f/50. Here
the spot increases in size and decreases in average irradiance. The spot
uniformity remains fairly good, however. Thus, if defocus is anticipated in
systems with a positive phase function, the system should be designed for the
upper part of the focus range.

As was discussed before, the beam’s phase at the target is uncon-
strained. Thus, in the system illustrated in Fig. 7, the target spot can not
simply be collimated with a negative lens to propagate as a flat-top beam.
The phase at the target, however, can be computed. A conjugate phase plate
placed at the target would cancel these phase differences, and the uniform
profile would propagate as a collimated beam, subject to diffraction. On the
other hand, if the target spot is simply desired at another location or scale, it
can be re-imaged with a conventional afocal telescope as discussed in
Sec. II1.B.

VI. METHOD OF DESIGN

As stated before, the quality of the target spot can be selected to suit the
application, and the necessary optical system parameters calculated directly.
In most cases, the size of the Gaussian beam at the phase element will be the
free variable that determines 3. If the phase element and the optical system
are to be studied with an optical design program, the phase function will
need to be expressed as a polynomial. With the optical design program, the
response of the system to tolerances in beam scaling, beam position, element
position, element tilt, and target defocus can be studied. Beam truncation
effects can also be modeled if necessary. If tolerances in input beam size or
target position are expected in systems with a positive phase function, the
target spot will degrade most gracefully if the element is designed for a
slightly larger beam than expected with a target plane slightly further
away than expected.

In order to facilitate modeling, the phase functions for rectangular and
circular spots have been fitted to 10th-order polynomials. The fits are good
to £ = 3v/2, which is 3r, at the phase element. The form for the rectangular
and circular cross section is

P(€) = ar€® + ay€* + agl® + ag€® + ayo€", (30)
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where

Rectangular spot Circular spot

a, = 4.73974 x 107! a, = 431128 x 107!
ay = —5.50034 x 1072 ay = —4.36550 x 1072
ag = 4.99298 x 1073 ag = 3.65204 x 1073
ag = —2.37191 x 107* ag = —1.65025 x 107*
ayy = 4.41478 x 107° ayy = 2.97368 x 1075,

For the rectangular spot, Fig. 16a shows the quality of fit to the original
function. No difference between the curves is visible, and they have an r.m.s.
variation of 0.0046 radians. As discussed before, the phase function for each
axis is multiplied by [ to scale it to the desired geometry, and the dimension-
less quantities & are replaced by actual coordinates according to Eq. (17).
The scaled phase functions for each axis are then summed to define the
complete phase function. For the circular spot, Fig. 16b shows the
quality of fit. The r.m.s. variation between the two curves is 0.0025 radians.
¢ is a radial coordinate in this case, and the phase function is radially
symmetric.

The following example illustrates the use of the technique to solve an
actual problem. Consider the case where a rectangular spot is desired
400mm away from an optical system. The target spot dimensions are
2mm (x axis) by 4 mm (y axis). A 10.6 pm laser produces a Gaussian
beam with a 1 /62 radius of 3mm, and the optical train is composed of
ZnSe (n = 2.403). We choose a system layout as shown in Fig. 7, with an
f =400 mm focusing lens. From graphs of target spot quality versus 3, we
choose = 8 as a minimum acceptable value. From Eq. (19), we see that
the beam radius at the phase element, ry, is the only unconstrained
variable. Also, the x axis will require the most expansion to produce the
required (3, since its target dimension is smaller. For 5, = 8, we obtain
ro = 6.76 mm at the phase element, for an expansion ratio of 2.25 from
the telescope. We could anamorphically expand the beam to produce the
same [ for the y axis, but we choose a standard radially symmetric telescope
for 8, = 16.

‘'We choose to generate our phase profile by varying the thickness of
the phase element. We wish to develop a polynomial that yields the phase
element sagitta, or deviations from a plane at the surface vertex and the
surface, as a function of distances from the optic axis. We must thus multi-
ply the coefficients of Eq. (16) by 3, or 3, and convert them to produce
sagitta as a function of element coordinates. The following equation gives
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Figure 16 (a) Rectangular phase function and 10th-order fit. (b) Circular phase
function and 10th-order fit. (From Ref. 13)

the sagitta of the phase surface:

Sag(x,y) = myx” + nyy” + myx* + ngy* + mex® + ngy® + mgx®

+ gy + myox'® + gy’ (31)
where
7\ 7\
ai)\ﬂx <f> aiAﬂv <\/_>
o “\ 7o
m; = m and n; = m . (32)
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Figure 17 Simulation of output beam produced by sample problem. 3, = 8 and
By = 16. The patch dimensions are 8 x 8 mm.

The coefficients in this polynomial would be

my =1.994 x 1074 n, = 3.988 x 107*
my = —1.0127 x 10°° ng = —2.0255 x 10°¢
mg = 4.0235 x 107 ng = 8.0471 x 1077

mg = —8.3652 x 10712 ng = —1.673 x 107"
my = 6.8144 x 107" nyo = 1.3629 x 1074

If we choose to build an element with a positive phase function, the sign
convention on the sagitta would be such that the phase surface had a con-
cave shape. A simulation of the output spot from this example problem
appears in Fig. 17.

VIl. EXPERIMENTAL EVALUATION

A beam shaping system was developed for an application that required a
long working distance, limited beam sizes, and operation at 10.6 um. This
resulted in a maximum target spot quality given by 8 = 4.8. The phase
element was fabricated in ZnSe as a 16-level diffractive optic. Figure 18
shows the element profile along the x axis as measured by a stylus profil-
ometer. The desired profile in terms of element thickness is shown by the
smooth curve overlaid on the measured profile. In order to match the 27
phase shifts of the diffractive optic, 27 phase shifts (or thickness shifts of
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Figure 18 Measured profile of shaping element along x axis. It is a 16-level
diffractive approximation to the desired profile shown by the smooth curve.
(From Ref. 13)

A/(n — 1)) were applied to the graph of desired profile as well. Overall, the
measured element profile was in reasonable agreement with the desired
profile, with the exception of a displacement near the center of the element.

The phase clement was tested on a different laser than that for which it
was designed, although the measured beam dimensions were within the
design goals. The laser beam passed through the beam shaping optical
system and on to a target plane. A lens beyond the target plane re-imaged
and magnified the target spot onto a pyroelectric array camera. The focus
and magnification of the re-imaging system were set by placing a calibrated
pinhole at the target plane and adjusting the lens for a sharp image on the
camera. The laser beam dimensions at the input of the optical system were
determined with orthogonal scanning knife-edges in conjunction with an
automated focusing system. This device computed the internal beam waist
size and location as well as the beam divergence. It then computed the same
parameters for the external laser beam. These quantities then determined the
initial beam size at the telescope system.

Before presenting the experimental results, it is instructive to see the
predicted spot geometry for the actual beam input parameters. The system
was modeled using the computed beam radii for the x and y axes at the first
telescope lens. There was a difference of roughly 5% in the computed radius
of curvature for the x and y axes, but this was ignored in the modeling. In

Copyright © 2000 Marcel Dekker, Inc.



Irradiance {arbitrary units)
}
/

Position {normalized units)

Figure19 Predicted target spot profiles using the measured beam radii at the input
of the optical system. Units are normalized. (From Ref. 13)

Fig. 19, predicted target spot profiles for the x and y axes are shown, scaled
to normalized position units. The optical system was initially aligned using a
visible reference beam. Final alignment of the beam shaping element
was accomplished by viewing the target image with the pyroelectric array
camera. Figure 20a shows an image of the target spot when the system was
aligned. Each change of shade going in toward the center corresponds to an
increase of irradiance. The square appearance is evident. Figure 20b shows a
contour plot of this same target spot. Profiles of this image were extracted
and are plotted in Fig. 21. These profiles use the same normalized position
units as the predicted profiles of Fig. 19. The measured profiles are smaller
than predicted, and they deviate somewhat from the desired uniform irra-
diance. Nevertheless, they show a general agreement with the predicted
uniform profiles.

The size difference is partly a function of difficulties in establishing the
best target plane. Distance measurements from the transform lens were
somewhat inexact, and compensation was necessary for the curvature of
the input beam. Also, the re-imaging lens and the camera were mounted
independently, so that it was difficult to move the target plane once re-
imaging focus was set. Most likely, the re-imaging magnification and
focus varied during the alignment process. These uncertainties, coupled
with alignment issues for the shaping element, made for difficulties with
several independent adjustments during system alignment. It would have
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Figure 20 (a) Image of the target spot for a = 4.8 system. (b) Contour plot of

the target spot. Contours have equal intervals of 3.2% of the maximum value. (From

Ref. 13)

been best to be able to mount the camera, re-imaging lens, and pinhole
together on a common structure, with the pinhole mounted kinematically.
When the camera system was used to find the best target plane, the pinhole
could be replaced to mark it exactly. Also, a good approximation to the
target plane position could be found by removing the shaping element from
the system. The focused beam waist would occur very close to the system
focal point, and would account for curvature in the input beam. Telescope
separation could be adjusted to put the target plane at the desired location,
with fewer subsequent adjustments to make during alignment.
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Figure21 Measured profiles of the target spot, normalized to the same units as the
predicted spot. (a) X axis. (b) Y axis. (From Ref. 13)
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Square beam, 1000 ms, top view

Figure 22 Top view of PMMA exposed to square-shaped beam for 1s.

Differences in the measured profile uniformity are at least partly the
result of two factors. First, the test laser displayed near-field deviations from
a Gaussian shape due to its unstable resonator configuration. These near-
field deviations tend to be masked in far-field beam measurements due to
diffraction effects from the focusing lens. Second, the measured element
profile shown in Fig. 18 differed somewhat from the desired profile, leading
to a difference in the phase delay applied to the beam.

A common application of beam shaping is for material processing, so
this square-shaped target spot was used to burn PMMA material in com-
parison with a standard Gaussian target spot. Figure 22 shows a top view of
PMMA material exposed to the square-shaped beam for 1s. The square
shaped of the removed material is evident. Figure 23 shows side views of
PMMA material exposed to both a Gaussian beam and a square-shaped
beam for 50 ms. These views were made by cutting the material through the
center of the burned spots. The square target beam would be advantageous
for situations where a burn needs to be made to a uniform depth. As the
figure shows, this target spot could be scanned over the material, and an
even burn profile made.

A beam shaping system that produces a circular flat-top profile with
(B = 20 has also been fabricated (28). In this design, the focusing and shap-
ing functions were combined in a single diffractive phase element designed
for A = 0.633 um. Combining the focusing function implies the addition of a
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Figure 23 (a) Cut-away view of PMMA exposed to a Gaussian beam for 50 ms.
(b) Cut-away view of PMMA exposed to square-shaped beam for 50 ms.

quadratic phase factor to the solution of Eq. (18). The design was fabricated
using laser-assisted chemical etching, which produced a smooth profile with
27 phase discontinuities. The addition of the focusing function increased the
slope of the phase function to the point that many more phase jumps were
needed than in a shaping-only design. Figure 24 illustrates a cross section of
the measured target spot for this system. the target spot shows fairly steep
skirts and a uniformity error of less than +5%. One likely explanation for
the uniformity error is interference caused by the phase discontinuities in the
element.

1750 2000 2750 2800 2750 3000 3250 3500 IS0 4000 4250 4500
Positinn (pm)

Figure 24 Experimental results for a combined shaping and focusing element. The
system was designed to transform a single-mode Gaussian beam into a uniform,
circular irradiance profile at the target with 5 = 20. This figure shows a cross section
through the center of the irradiance profile. (From Ref. 28)
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Viil. SUMMARY

Single-mode Gaussian beams can be transformed into circular or rectan-
gular beams with approximately uniform irradiance profiles in a lossless
manner by the introduction of an appropriate phase element in conjunction
with a Fourier transform lens. This chapter presents a diffraction-theory-
based solution for the phase delay obtained using the method of stationary
phase. The quality of the target spot was shown to depend on a parameter 3
that is a function of the input beam size, the target spot size, the focal length
of the transform lens, and the wavelength. This dimensionless parameter
accounts for diffraction, independently of the particular system. In addition
to being a result of applying the method of stationary phase to the evalua-
tion of the diffraction integrals, 3 was shown to be directly applicable to
the general beam shaping problem using the classical uncertainty principle.
The use of the 8 parameter allows the designer to determine the system
parameters necessary for a desired target spot quality, rather than iterate
through several designs. Once the system parameters are known, either the
circular or rectangular phase function can be scaled appropriately. The
phase element function can be approximated by a polynomial, which
allows standard optics modeling software to predict the effects of system
aberrations and tolerances.

Techniques for collimating the shaped beam by using a conjugate
phase element are outlined. The phase plate produces a beam with both
uniform phase and amplitude, giving a greater depth of field. Bounds on
the generalized Rayleigh range for uniform amplitude and phase beams
were derived using the uncertainty principle.

Beam shaping system design techniques, based on the theory, were
discussed and several numerical examples were presented to illustrate the
range of solutions. The sensitivity of system performance to errors in align-
ment was discussed and illustrated by numerical simulations.

A particular design was implemented in hardware and tested.
Experimental results show that the technique produced a square target
spot that was close to the predicted profile. The application to of this system
to material drilling and ablation is discussed.
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APPENDIX A

A simple illustration of the method of stationary phase is given by the
problem of mapping a uniform amplitude beam into a uniform irradiance
beam. Consider the problem of determining the phase element in Fig. 2 that
maps a uniform amplitude and phase beam into a uniform irradiance beam
at the focal plane of the transform lens. If the phase of the input beam is not
uniform it can be corrected by the phase element.

For simplicity, we treat the problem in one dimension. The field at the
focal plane of the Fourier transform lens is given by

E(w) = J rect(£>eik[¢(“/ )=x/k gy, (A-1)
o a
where « is the input beam width and k is an arbitrary parameter (not the
wave number). Letting w/k = (3, we can write Eq. (A-1) as

(07

00 X o )

E(w) = J rect(—)e’k[o(x/wdx] dx. (A-2)
Equation (A-2) can be approximated by the method of stationary phase,
giving good results for large k. It is desired that the intensity of the field at
the focal plane approximate a rect function. The stationary phase formula

. w112
1.(k) ~ Ot /4) £, [ ] ’ A3
(0 10| g (a3)
where p = sign”(c) and ¢ is determined by ’(c) = 0, gives
27
|E(w)]* = rect(c) ek (A-4)
In obtaining Eq. (A-4) we have used
X
v =02 ) - (A-5)

Eq. (A-4) implies that ¢”(x) = a constant. Let

and determine ¢ by setting dv(c)/dc = 0, which gives ¢ = Ba? /2.
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The field at the focal plane is then approximated by

E ~ \/% o i o /4k) = /4) rect(%) : (A-7)

where w = 27mx,/Af and the output spot width, W, is determined by
TWa/kA =1, giving

_ TWa

k= VAR (A-8)

The parameter k is similar to 3 in Sec. I1.D, in that the larger the value of k
the better the solution. Note that k is a dimensionless constant.

As in the Gaussian to flat-top solution, the phase element that accom-
plishes the mapping is k¢(x) with ¢(x) determined by Eq. (A-6) and k
determined by (A-8). It is interesting to note that the phase element is a
simple (thin) lens in this case. Within the range of Fourier optics the solution is
independent of the spacing between the thin lens phase element and the Fourier
transform. If a small array of these elements were placed before the Fourier
transform lens, the uniform patterns for each phase element would be super-
imposed in the focal plane of the Fourier transform lens. This is the diffraction
theory basis for the “fly’s eye lens” beam integration system.

A schematic diagram of the “fly’s eye lens” beam integration system
is shown in Fig. 25. In the figure, each lenslet array element is focused to
a common region by a focusing (Fourier transform lens), effecting beam
integration (averaging). Each lens in the array samples the input beam. If
the size of the elemental lenses in the array is small enough, the irradiance of
each sample will be approximately uniform and, as designed, the output
irradiance for each lens element will be approximately uniform. The net
output of the beam integration system is a summation of the output from
each array element, which should be approximately uniform. However,
there will be a fine-structure interference component in the output that
will depend on the degree of coherence of the laser system. Beam integration
systems are typically used with multimode laser systems. Multi-element
imaging systems with two lenslet arrays can be designed to eliminate
diffraction altogether (23). A detailed optical analysis of multi-faceted
beam integration systems is presented in Chapter 7.

APPENDIX B

Assuming thescalar wave equation, it can be shown that the r.m.s. beam
width is a quadratic function of distance along the optical axis. Equations
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Figure 25 Optical schematic of the “fly’s eye lens” beam integration system.

(28) and (29) in Sec. III.A can be obtained as follow. For the case of a
monochromatic field, the scalar wave equation reduces to the Helmoltz

equation

(V2 4+ K)u(x, y,2) = 0, (B-1)
where

— > o &

o o oz
and k = 27/ . In the Fourier transform domain, the solution to Eq. (B-1) is
given (20) by

Ufus frr7) = Ulfas fr 0)€V o =070, (B-2)
where upper-case letters denote Fourier transformed quantities, f,, f, are
Fourier transform variables, and U(f,, f;,0) is the Fourier transform
of the aperture field (at z=0). The solution of the wave equation
given in Eq. (B-2) neglects evanescent waves requiring that (27rfx)2+
(2nf)? < K.

The mean-square beam width in the coordinate for a beam with its
centroid at the coordinate origin is defined by

| " | wutrrop axa

L
(L) w‘mumﬁ,>
|

(Ap)* =
u(x,y,2)* dx dy

2r of
JIUﬂ@,NWAA

df. df,

oo
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The integrand in the numerator of the expression after the last equality sign
in Eq. (B-3) can be expanded using Eq. (B-2) to obtain

‘8U(f,‘wf;c7z) : _ ‘aU(fwwa) (271') fo
o o e Gy - o
C oy QU 150 0)
U(fxvfwo) af\}‘|
(2m)*2f

U(fer £, 0) B-4
—(27rf;)2—(27rf;=)2| (f2: £, 0)] (B-4)

Substituting this result in Eq. (B-3) gives

YL

J U(fof, 0P df, df,

o0 J —00

df dfy

(Ap)* =

( 1 ) (2r) f,x
o wcz (21f,)* — (2af,)?
aU* Xy Jy» O
U(AM)% df, df,
- 2 00 00
|" | wvesoraa,
o LN (2n)Yfs
: (271') Jfoc Lo 12— (2nf)? — (2nf,)?
2
. - Ul Pl o
|" [ 1wt noraa,
Equation (B-5) can be written in the simple form
(Ap)? =a— bz + ¢, (B-6)

where a, b, and ¢ are defined as the coefficients of the corresponding powers
of z. in Eq. (B-5). The main result expressed in Eq. (B-5), or equivalently Eq.
(B-6), that the mean-square beam width is a quadratic function z.
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Further, if » = 0 in Eq. (B-6) the minimum beam width will be in the
plane z = 0, and Eq. (B-6) becomes

(Ap)* = a+ ¢z’ (B-7)

In Eq. (B-7) ais, by definition, the minimum mean-square beam radius. That
is, a = (Apmin)z. Determining the conditions that give » = 0 is not a trivial
matter. A sufficient, but not necessary condition, is that the term in brackets
in the numerator integral defining b is real. This is achieved if U( f, f,0) is
a real function with the possibility of multiplication by a complex constant.
This condition includes beams that have purely even or odd amplitude
functions and a uniform phase. It would also include, for example, beams
modulated by suitably symmetric square waves.

To minimize the spread of the beam it is desirable to have ¢ as small
as possible. However, a and ¢ are related by the uncertainty principle.
To apply the uncertainty principle, we can again use the condition
(2xf.)* + (2nf.)* < k* in the integral defining ¢ to obtain

w || mueasoraa

(27r)2 S N ' (B-8)
|" | wvesoraa,
Applying the uncertainty principle (see Sec. I1.C) one can obtain
2
ac > A 5 (B-9)
4(2m)

or equivalently,

A
Vae > —. (B-10)
47
One can define a Rayleigh range by the condition a + ¢z3 = 2a, giving

o= Ve (B-11)

This result can be readily checked by comparing it to the Rayleigh range for
Gaussian beams. It is well known that a Gaussian function is a minimum
uncertainty function (16), that is, equality obtains in the uncertainty prin-
ciple. Thus, substituting Eq. (B-10) in Eq. (B-11) gives the Rayleigh range
for a Gaussian beam as

_d4ma 471'(Apmin)2

= = - rmn B-12
20 b\ b\ ( )
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Noting that Apyi, = W,/2, where W, is the 1/¢* beam radius, we obtain
zo = Wy /A, which is the standard result for Gaussian beams (26). Finally,
the uncertainty principle gives the inequality

< 4iél _ 47T(Apmin)2
— A - )\ b
as a bound on the Rayleigh range. The components of the vector wave

equation obey the scalar wave equation. Hence, these results can readily
be extended to solutions of the vector wave equation.

Z (B-13)
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Geometrical Methods

David L. Shealy
University of Alabama at Birmingham, Birmingham, Alabama

I. INTRODUCTION

Using geometrical methods to shape a laser beam profile involves applica-
tion of geometrical optics to solve the optical design problem. Specifically,
the laws of reflection and refraction are used along with ray tracing, con-
servation of energy within a bundle of rays, and the constant optical path
length condition to design laser beam profile shaping optical systems.
Interference or diffraction effects are not considered as part of the design
process in this chapter. That is, only lenses and mirrors are used for the
optical components of the laser beam profile shaping systems discussed in
this chapter.

There are many diverse applications of lasers in science and tech-
nology (1-4). These applications use a variety of the unique properties of
lasers, such as the high intensity, coherent, monochromatic light of lasers.
For illumination applications, such as in medicine, holography, optical pro-
cessing, spectroscopy, photography, materials processing, and laser fusion,
it is very important for the laser beam to uniformly illuminate the target
surface. Truncating a Gaussian beam directly with an aperture or attenuat-
ing the beam with a neutral density filter or electrooptics device with an
appropriate transversal transmittance profile (5) are straightforward ways to
more uniformly illuminate the target surface with a laser beam. However,
these intensity apodization techniques result in substantial lose of energy. It
is also important to use a simple and efficient beam profile shaping system.
Both reflective (6-10) and refractive (11-16) optical systems can be used to
shape laser beam profiles as well as holographic and diffraction elements
(17-22).
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McDermit and Horton (6) presented a method for designing a rota-
tionally symmetric reflective optical system for illuminating a receiver sur-
face in a prescribed manner using a non-uniform input beam profile. Using
their method, two mirrors were designed to allow a laser to uniformly heat a
flat surface as part of a material testing procedure. Malyak (10) has designed
a two-mirror laser profile shaping system where the second mirror is decen-
tered relative to the first mirror to eliminate the central obscuration present
in the axially symmetric design. A set of equations is presented for the
mirror surface figure for the non-rotationally symmetric laser profile shap-
ing optical system.

Kreuzer (11) has patented a coherent-light optical system to yield an
output beam of desired intensity distribution and wavefront shape. Two
aspherical optical surfaces are used to achieve this intensity profile shaping.
Glass et al. (16) have designed both reflective and refractive laser profile
shaping systems for use in laser fusion research via the principal surface of
the optical system. Rhodes and Shealy (12,13) derived a set of differential
equations using intensity mapping to calculate the shape of two aspherical
surfaces of a lens system that expands and converts a Gaussian laser beam
profile into a collimated, uniform irradiance output beam. Using their
method, two plano-aspherical lenses have been designed, fabricated and
used in a holographic projection system (23-25). While seeking to use sphe-
rical surfaces for each optical element, Wang and Shealy (26) presented a
method for designing an expanded, uniform irradiance profile laser beam
using two axial gradient-index lenses. Their design procedure yields the
gradient-index profiles as well as the curvatures and separation of the lens
surfaces. Cornwell (46,47) introduced non-projective transformations for
use in designing reflective and refractive laser beam profile shaping systems
and presented a systematic seven-step procedure for designing laser profile
shaping systems with either rectangular or polar symmetry. A number of
illustrative examples of using non-projective transformations to design both
reflective and refractive laser profile shaping systems is presented in Refs. 46
and 47.

A general theory of designing laser profile shaping optical systems as
applied to a two-lens optical system is presented in Sec. II. Specific attention
is devoted to the application of conservation of energy and the constant
optical path length condition as constraints on the optical surface figure of
laser profile shaping systems. A summary of a seven—step procedure for
using non-projective transformation to design laser profile shaping systems
is presented in Sec. III. Applications of these geometrical methods for
designing refractive and reflective laser profile shaping optical systems are
presented in Secs IV and V. Limitations of geometrical methods for design-
ing laser profile shaping systems are discussed in Secs IV.A.1 and IV.A.2.
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Il. THEORY OF LASER BEAM PROFILE SHAPING

The concepts of rays, wavefront, and energy propagation are fundamental
to understanding and using geometrical optics for shaping laser beam pro-
files. A brief overview of these concepts is presented in this section. Then,
geometrical optics is used to set up several constraint equations which are
used to determine the reflective or refractive surface shape or gradient index
profile as part of the optical design of laser beam profile shaping optical
systems. There are many discussions of geometrical optics in the literature
(27-30). In order to determine or optimize the illumination within an optical
system, the optical field must be determined throughout the system. The
optical field is a local plane wave solution of Maxwell’s equations for
an isotropic, non-conducting, charge-free medium and is a solution of the
scalar wave equation (31, 32)

(V2 + 1n?kg) u(r) = 0 (1)

where u(r) represents the components of the electric field at any point r, n is
the index of refraction at r, kg = w/c = 27/}, is the wave number in free
space, w is the frequency of the wave, ¢ is the speed of light, and )\, is the
wavelength of light. Assume that a solution to Eq. (1) can be written as

u(r) = uo(r) explikyS(r)] (2)

where uy(r) and S(r) are unknown functions of r. Equation (1) leads to the
following conditions which must be satisfied by u,(r) and S(r):

(VS)=n’ 3)
2uy VS - Vg + uiV>S =0 (4)
where the term proportional to (1/kg) has been neglected. Equation (3) is

known as the eikonal equation and is a basic equation of geometrical optics.
The surfaces

S(x,y,z) = const. (5)

are constant phase fronts of the optical field and are known as the geo-
metrical wavefronts. For isotropic media, rays are normal to the wavefront.
A unit vector normal to the wavefront and along a ray at the point r is given
by
VS(r) VS(r)
a(r) = oo = ©)
VS| n(r)
where the eikonal equation was used to simplify this expression for the ray
vector a. Additional properties of rays are given below.
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Equation (4) is equivalent to conservation of radiant energy within a
bundle of rays and leads to the geometrical optics intensity law for propaga-
tion of a bundle of rays as illustrated in Ref. 30. Using the vector identity

V-(fv)=fV-v+v-Vf, ()
Eq. (4) can be rewritten as
V- (g VS) =V - (ugna) = 0. (8)

Recognizing that the energy density of a field is proportional to the square
of the field amplitude u(z) and that the intensity 7 is equal to energy density of
the field times the speed of propagation within medium, then Eq. (8) can be
written as

V- (Ia)=0. 9)

Multiplying Eq. (8) by the constant (c¢/4mx) for c.g.s. units gives the correct
dimensions for intensity (33). Equation (9) expresses conservation of radiant
energy for non-conducting medium. Integrating Eq. (9) over a tube sur-
rounding a bundle of rays (34) as illustrated in Fig. 1 gives, after application
of Gauss’ theorem,

I, dA, = I, dA4,. (10)

Equation (10) expresses conservation of energy along a ray bundle between
any two surfaces intersecting the beam and is a basic equation used to design
laser beam profile shaping optical systems.

According to geometrical optics, the phase and amplitude of the opti-
cal field are evaluated independently. First, the ray paths are evaluated
throughout the optical system, which enables computing the phase in
terms of the optical path length of rays passing thought the system. Next,
the amplitude of the optical field is determined by monitoring the intensity
variations along each ray (35-37). This approach for evaluating the phase
and amplitude of the optical field is in contrast to the more rigorous wave

’43 l;dA;

iy

LidA;

Source

Figure1 Conservation of energy within a bundle of rays.
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optics or electromagnetic theory approach, which involves solving coupled
partial differential equations for the complex electromagnetic fields where
the phase and amplitudes are interdependent.

Rays generally characterize the direction of the flow or propagation of
radiant energy, except near foci or the edge of a shadow where interference
and diffraction takes place. Thus, a ray is a mathematical construct rather
than a physical entity. Snell’s law relates the direction of incident and
refracted rays at an interface between media of different indices of refrac-
tion, which can be written in vector form (38):

n(ax n) =n'(A x n) (11)
where a and A are unit vectors along the incident and refracted rays, nis a unit
vector along the normal to the interface surface with the general orientation of
the incident ray, and (n,n’) are the indices of refraction of the incident and
refracting media. The vector nature of this equation insures coplanarity of
rays and interface surface normal, as required by electromagnetic theory. For
ray tracing it is convenient to vector multiply Eq. (11) by i and simplify the
resulting triple vector product into the form

n'A =na+ [n'cosi’ —ncosi|n (12)
where
cosi’=A-n and cosi=a-n (13)

and (i,i’) are the angles of incidence and refraction. When mirrors are
involved, the refraction ray equations can be used for reflection by setting

n' = —n and using the optics sign convention (39). Explicitly, a unit vector A
along a reflected ray is given by
A=a—2i(a-n) (14)

where n in a unit normal vector at the point of reflections, and a is a unit
vector along the incident ray.

Rays may also be defined as lines normal to the geometrical wave-
front. Wave propagation is commonly described by wavefronts. A wave-
front is a surface of constant phase of the wave or optical path length from
the source or reference surface. In electromagnetic theory the direction of
radiant energy propagation is given by the Poynting vector or cross product
of the electric and magnetic fields.

Each ray generally follows the path of shortest time through the opti-
cal system according to Fermat’s principle which states that a ray from
points P to Q is the curve C connecting these two points such that the
integral

optical path length, OPL(C) :J n(x, y, z)ds (15)
c
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is an extremum (maximum, minimum, or stationary). The quantity n(x, y, z)
is the index of refraction of the medium, and ds is the infinitesimal arc length
of the curve. For a homogeneous medium, the optical path length between P
and Q is the geometrical path length between the two points times the index
of refraction of the medium. In general, the optical path length divided by
the speed of light in free space, ¢, gives the time for light to travel from point
P to Q along the ray path C. The ray path C can be determined using the
calculus of variations (40). It can be shown (32) that when the index of
refraction, n(r), is a smooth function, the ray path C satisfies the differential
equation

& (10 %) = o (16)

where r is the position vector of any point on the ray. Equation (16) is
known as the ray equation and is difficult to solve in many cases. For
homogeneous medium (n = const.), the ray path is represented by a straight
line

r(s)y=as+b (17)

where a and b are constant vectors, and s is the ray path length. Constant
index of refraction materials are used in many optical systems. When the
index of refraction is a function of position, such as the axial distance, z, the
ray paths are curved. Section IV.B will illustrate how laser profile shaping
systems are designed using materials with a gradient index of refraction,
n(z). Now, the ray trace equations, conservation of energy along ray bundle,
and the constant optical path length condition are used to design optical
systems for shaping laser beam profiles.

A. Optical Design and Energy Balance Condition

For the class of applications for which geometrical methods are used to
design a laser beam profile shaping system, it is desirable to transform an
input laser beam with a Gaussian intensity profile into an output beam with
uniform intensity profile while retaining the input wavefront shape. Further,
it is often desirable to expand the laser beam diameter. To achieve these
design goals, the optical surface shapes or index of refraction profiles may be
used as design variables. Consider the geometrical configuration of a refract-
ing laser beam profile shaping system shown in Fig. 2. For applications
using monochromatic laser beams, there are no chromatic aberrations pre-
sent, and it is satisfactory to use the same material (index of refraction) for
all lenses. The two curved surfaces (reflecting or refracting, depending on the
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Figure 2 Geometrical configuration of laser expander. (From Ref. 23)

application) are used to satisfy the design conditions for shaping a laser
beam profile.

Consider an incoming bundle of rays with an energy density o(r)
incident upon a lens system at a radial distance r from the optical axis.
Assume the incident beam is a laser in the fundamental, Gaussian TEM,
mode with central intensity normalized to unity. Then,

o(r) = exp[=2(r/ro)’] (18)

where r, is the radius of the beam. The conventional definition (41) of the
diameter of a laser beam or waist is the location at which the field amplitude
is 1 /e of its peak value. At the beam waist the beam intensity is 1 / ¢* of its
axial value. For a Gaussian beam, 86.5% of the total energy of the beam is
contained within the waist. This beam leaves the optical system at a radial
distance R from the optical axis with an energy density of ¥(R) = const.
Integrating Eq. (10) over the incident and exit apertures gives

2 r 271 R
J d()J o(r)rdr :J d()J Y(R)RdR (19)
0 0 0 0

where reflection and absorption losses have not been considered in Eq. (19).
Since 3(R) is a constant, the radius of beam in the exit aperture R can be
evaluated by carrying out the integration using Eq. (18) for o(r) to obtain

2 1/2
p,
R={ 21— exp(-27 )} (20)
where
"3 2 2
Y= 2R2 [1 _exp(_zrmax/r())]' (21)
max

In Eq. (21), rpax 1s the working aperture of the first lens, and R, is the
corresponding point on the second lens. Next, the shape of the first lens
surface s must be determined such that it will refract rays to the second lens
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surface S at the radial point R given by Eq. (20), and the shape of the second
lens surface S must be determined so that rays will refract to be parallel to
the optical axis as the beam leaves the optical system.

Rays are refracted at surface s according to Snell’s law, and the direc-
tion of refracted ray A traveling from the point (r,z) on surface s to the
point (R, Z) on surface S is given by Eq. (12) where the incident rays are
along the optical axis, that is, a = K. Explicitly, a unit vector along the
refracted rays over surface s is given by

A=~k+Qn (22)
where
B 14 (21V2(1 — ~2)11/2
o1+ “++<(Z>/)%l/2 )} o)
i=(—2'F+k)/[1+ (=)', (24)
Y= I’l/l’l(), (25)
z' = dz(r)/dr. (26)

The unit vectors (T, k) are along the r — z directions.
The ray path connecting (r, z) and (R, Z) is a straight line according to
Eq. (17) with slope given by Eq. (22) and can be written as

(R—1) A, = (Z — 2)4, (27)

where A, and A. are the (r, z) components of A given by Eq. (22).
Combining Eqgs. (22) and (27) yields, after squaring and collecting terms
in powers of z”:

EV'PR=1+ (P = 1D)(Z =27 = ) (R-1)(Z - 2)
—EPA=PNR=1 +(Z=2)") = 22" (R=1)(Z - 2)
—(R=r=0 (28)

which can be factored and reduced to yield

(1= NZ =2 =P (R=rV)z") + 2(R—r)(Z = 2)'
+(R—-r)?=0. (29)

In Egs. (28) and (29), R is given by Eq. (20), and z is the solution to the
differential equation, Eq. (29), as a function of the entrance aperture coor-
dinate r. Z in Egs. (28) and (29) is not yet known. For beam profile shaping
applications which only need to illuminate a specific surface S with uniform
intensity, the equation of the surface S expressed as Z = Z(R) will be
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adequate to solve the differential equation (29) for the shape of the surface s.
For other beam profile shaping applications which seek also to control the
shape of the output wavefront, the constant optical path length condition is
used for rays passing through this optical system to determine the shape of
surface S. The constant optical length condition yields a functional relation-
ship between Z and z so that the differential equation (29) can be solved.
The next section describes how the constant optical path length condition
can be used to determine the shapes of the surfaces s and S, when solved
simultaneously with Eq. (29).

B. Constant Optical Path Length Condition

In order for the output wavefront to have the same shape as the input plane
wavefront, it is necessary for all rays passing through the optical system to
have the same optical path length, which is defined in Eq. (15). For uniform
index media, the optical path length of a ray passing through an optical
system is the sum of the geometrical path length of a specific ray times the
index of refraction of the component of the system. For the two-lens beam
shaping system shown in Fig. 2, the optical path length (OPL), of a ray
passing along the optical axis is

(OPL)O = i’lll + nod + l’llz. (30)
For an arbitrary ray of height r, the optical path length is
(OPL), =nz+no[(R—r)* +(Z =22 +n(ty +d+ 1, - Z).  (31)

Recall that the origin of the z-axis remains fixed at the vertex of the first
optical surface of the system. The constant optical path length condition is
satisfied for this optical system by requiring

(OPL), = (OPL),. (32)
Combining Eqgs. (30)—(32) leads to
no[(R— 1) +(Z = 2] =n(Z = 2) — d(n— ny), (33)

which can be viewed as a quadratic equation for (Z — z) as a function of
entrance pupil aperture radius r. After squaring Eq. (33) and collecting
terms, the solution of the resulting quadratic equation for (Z — z)can be

written as
n(n —ny)d + [ms(n — D*d* + (n* — n} R —r)1!/?
(7 =M 0~ D8+ R ) a4
0
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where the positive sign of the radical has been used so that the solution
reduces to the appropriate value of (Z —z) =d when r = R = 0. Several
approaches for solving the differential equation (29) and Eq. (34) are pre-
sented in Sec. 11.C.

C. Solution of the Differential Equations

The goal of the optical design of a laser beam profile shaping system is
to define the optical components adequately so that the system can be
analyzed, fabricated, and tested. This generally requires specification of
the shapes of and spacing between the optical surfaces as well as the
index of refraction of all the media. For the refracting beam expander
system illustrated in Fig. 2, the shape of surfaces s and S must be deter-
mined. Equations (20), (29), and (34) can be solved numerically for R(r),
z(r), Z(r) when n, d, t|, t, are given. In contrast to conventional optical
design, which optimizes the design parameters to minimize a merit function,
the present method of solving differential equations defines the optical sur-
faces s and S by producing tables of numerical data (r, z) for surface s and
(R, Z) for surface S. This resulting surface data can be fit to equations for
the surfaces s and S, which will be discussed in more details in Sec. II.D. It
does not seem possible to solve these differential equation analytically for
z(r) and Z(R).
Specifically, solving Eq. (29) as a quadratic equation for z'gives

Z,_—(R—r)(Z—z):l:n(R—r)\/(Z—z)z—(R—r)z 55
a (1 =) (Z —z2)* —n*(R—r)?

where the positive solution for z’ is used for the laser shaping lens config-
uration shown in Fig. 2 so that the first lens is divergent. For a specific lens
system, such as defined in Table 1, the energy density X of the output beam
is computed from Eq. (21); the height of a ray R at the second lens for each
ray in the entrance pupil with height r is computed from Eq. (20); (Z — z) is
computed from Eq. (34); and z’ is computed from Eq. (35). Then, z is
determined by numerically integrating z’ from Eq. (35), and Z is evaluated
from Eq. (34). A FORTRAN program for computing (r,z) and (R, Z) is
given in Appendix A of Ref. 24. In these studies, typical numerical errors
are less than 107"

It is interesting to note that combining Eqs. (29) and (34) permits z’ to
be expressed as a function of r, thus, enabling z(r) to be evaluated by an
integration. Then, the shape of S is computed from Eq. (34). Cornwell (46)
and Malyak (10) reach a similar conclusion. Namely, the shape of the first
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Table1 Parameters of Laser Shaping System

Wavelength of laser, A = 411.57 nm (HeCd laser)

Radius of the working aperture of the primary lens, r; = § mm
Radius of the working aperture of the secondary lens, R; = 12.5mm
Distance between the lenses, d = 150 mm

Surrounding medium is air, ng = 1.0

Index of refraction of the lenses, n = 1.43916 (CaF,)

Thickness of the lenses, t; = t, = 10 mm

element can written as
z(r) = J f(rydr+C (36)

where C is a constant, and f(r) is a known function. The shape of the second
surface can be computed from the following expression:

Z(r) = =(r) + &(r) (37)

where g(r) is another known function. According to Ref. 46, the optical
surfaces of both reflective and refractive laser profile shaping systems with
collimated input and output beams satisfy equations in the form of Egs. (36)
and (37).

Explicitly for the refractive laser profile shaping system shown in Fig. 2
and discussed in Secs II.A and II.B, it follows from Egs. (20) and (34) that

nn—no)d + |m(n = 1)2d + (w* = n})
291/2
X ﬁ I —ex 72ﬁ —r /
2y P2
Z=z+ R . (38)

n- —ny

Comparing the last two equations gives

n(n —ny)d + |n3(n — 1)2d2 + (n* = n)
5 5 291/2
x{\/g—; 1 —exp —2;—2 —r}}
g(r) = [2 . ( 0>] . (39)

n* —ng
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Similarly, Eq. (29) can be written as

a(r)z” +b(r)z’ +A(r) =0 (40)
where
2 2
c(r)=(R-r)= <\/ﬁ [l—exp (—2%” —r>7 (41)
b(r) = 2¢(r)g(r), (42)
a(r) = (1 =")g*(r) =" (). (43)

Applying the quadratic formula to Eq. (40) gives
L1 _ —b() £ V() — 4a(r)c(r)
2a(r)

where the positve solution for z’ is used for the laser shaping lens con-
figuration shown in Fig. 2. Integrating Eq. (44) leads to Eq. (36) where

_ —b(r) + /D (r) — 4a(r)3(r)
2a(r) '

(44)

S(r)

(45)

D. Analysis of Optical System

After solving the differential equations as described in Sec. II.C, the asphe-
rical surfaces of the lens system are represented by sets of data
[(r,z) and (R, Z)]. It is convenient for analysis and fabrication of optical
elements, if the aspherical surfaces are expressed in terms of analytical
functions. The conventional optics surface equation (42) of a conic term
plus rotationally symmetric aspherical deformation terms has been used
to fit the curved surfaces of a laser shaping system. The optics surface
equation can be written in the form

2 N
Ccr 2i
: 1+x/17(1+n)02r2+;1421r (46)
where ¢ (vertex curvature), s (conic constant), and A,; (coefficients of the
polynomial deformation terms) are surface parameters that are determined
by the fitting process for each surface. A nonlinear least squares fitting
program based on the simplex method (43) has been successfully used
(23-25) to represent the optical surfaces of a laser profile shaping system.
Optical surfaces can be planar, spherical, conic, or general aspheric.
Equation (46) describes a general aspheric surface with the sag z being an
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even function of the surface radial distance from the optical axis. The first
term in Eq. (46) represents the conic term. If x and A,; are zero, the surface
will be spherical with radius equal to 1/c. If x is not zero, but all 4,; are
zero, then the surface is a conic section, such as an ellipse
(k >0, or —1<k<0), parabola (k= —1), and hyperbola (k< —1).
For a general aspheric surface, « is not equal to zero and some polynomial
terms are needed to obtain a fit with least squared errors less than 107", If a
surface shape is close to a conic, then only a few deformation terms will be
needed to obtain a very accurate fit of Eq. (46) to the numerical data
representing the curved surfaces of the laser beam profile shaping optical
system. The surface curvature is determined from the vertex surface data.
However, x and A4,; can have many different solutions which are dependent
upon each other. In other words, there is not a unique solution for this
nonlinear fitting process. If x is changed, then 4,; will change in order for
Eq. (46) to represent the same surface. From a numerical point of view, the
solution with the smallest least squared fitting error represents the best
solution. However, from a fabrication point of view, it is desirable to use
a small number of aspherical terms. Therefore, it is desirable to identify
simple surface representations which will be easier to fabricate. More infor-
mation about this fitting process will be presented in Sec. IV.A.

When the surface equations, d-spacing and indices of refraction are
known for all elements of a laser beam profile shaping optical system, as
shown in Fig. 2, conventional optical design software packages (Code V,
Oslo, or Zemax) can be used to ray trace and analyze its performance.
Typically, these standard optical design and analysis software packages
compute aberrations-plots, MTF-plots, spot diagrams, and optical path
difference (OPD) of systems. The variation of the OPD over the aperture
describes the variation in shape of the wavefront as it propagates through
the lens. Unfortunately, standard optical design software packages do not
provide a direct way to compute the irradiance over the exit pupil of a laser
beam profile shaping system. The flux flow equation (36) has been used to
compute the irradiance along a ray as it propagates through the optical
system (12,13). Alternatively, radiometric calculations for optical systems
can be performed by using “unit sphere”” methods (35) or by writing a
macro for an optical design software package to compute the irradiance
over an output surface of the laser shaping system (44). For a laser shaping
system with parameters given in Table 1, typical plots of the irradiance over
the input and output surfaces of laser beam profile shaping systems are
illustrated in Figs 3 and 4 respectively. Specific results for computing the
irradiance over an output surface of a laser shaping system will be presented
and discussed in Sec. IIV.A. In Sec. IV.C, the geometrical methods for
designing laser profile shaping systems, which have been discussed in Sec.
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Figure 4 Irradiance profile of output beam. (From Ref. 24)

IV.B, will be related to a seven-step recipe for designing two-element optical
systems which perform non-projective transformations as discussed by
Cornwell (46,47).

lll. NON-PROJECTIVE TRANSFORMATIONS
For a projective transformation (45) in optics, a point in image space can be

expressed as a linear function of the coordinates of the object point. Perfect
imaging systems, such as Maxwell’s “fish-eye” lens or stigmatic imaging of
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surfaces, are examples of projective transformations in optics. In practice,
aberrations are present in many optical systems, and point-to-point imaging
is not possible, except to the first-order or paraxial approximation. Cornwell
(46,47) notes that all real optical systems perform non-projective transfor-
mations to some extent. That is, there is a non-linecar dependence between
input (or object) and output (or image) coordinates.

The redistribution of rays leading to the beam shaping illustrated in
Fig. 4 requires a non-linear relationship between the input and output aper-
ture coordinates as given by Eqs. (20) and (38). Therefore, the geometrical
methods of Sec. II for designing a laser profile shaping system are an exam-
ple of a non-projective transformation in optics. Cornwell notes that the first
element of a laser beam profile shaping (non-projective transform) system
creates sufficient aberrations in the wavefront to restructure the intensity of
the beam after propagation of the wavefront over a specified distance. Then,
the second element of a laser beam profile shaping system has suitable
contour to restore the original wavefront shape of the beam. If the purpose
of a laser beam profile shaping system is to uniformly illuminate a surface,
then the second element is not needed. Symbolically, a laser beam
profile shaping system may be considered to be a ““black box” which trans-
forms an input laser beam (plane wave) with a Gaussian intensity distribu-
tion into an output beam (plane wave) with uniform intensity distribution.
The input and output beams have radii » and R, respectively, as shown in
Fig. 2. Reference 46 presents extensive discussion of many types of laser
beam profile shaping systems and draws some interesting general con-
clusions.

In particular, Cornwell provides a seven-step recipe for designing two-
element systems, which perform non-projective transformations, such as,
laser profile shaping systems. Since the contents of Ref. 46 are not widely
available in the optics literature to the knowledge of this author, these seven
steps are summarized below:

1. Write out differential power expressions for the intensity distribu-
tions over the input and output planes.

Rectangular coordinates

In(x,y)dxdy = L, (X,Y)dX dY (47)
Polar coordinates

L, (r)rdr = I, (R)RdR (48)

2. Use the conservation of energy to relate the input and output
beam parameters.
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Rectangular coordinates

In(x, ) dx dy =j Io(X, Y)dX dY  (49)

Input Aperture Output Aperture

Polar coordinates

(= | I (R)RAR (50)

Input Aperture Output Aperture

3. Determine the magnification relating the input and output ray
heights.

Rectangular coordinates
Assume the intensity functions are separable:

Iin(xvy) = ax(x)ay(y)v (51)
Tou (X, Y) = Ax(X) Ay (Y). (52)
Allowing for non-uniform shaping of a laser beam profile in two

orthogonal directions, X = m,(x)x and ¥ = m,(y)y, the rectangu-
lar magnifications follow from combining Egs. (47), (51), and (52):

m) =16 ] 2+ (33)
11 (¥ av)dv
{a L Ay (vm,(v))

where C; are constants determined by boundary conditions, such
as the magnification for a rim ray, as done in Eq. (20).

my(y) =

=5 + C3] (54)

Polar coordinates

R =m(r)r (55)

=3 2], 2o+ 9

where C is a constant determined from the boundary conditions.

4. Express the optical path length (OPL) between input and output
reference surfaces of an arbitrary ray in terms of the OPL of a
reference ray, such as Eq. (32).

5. Determine the sag z(r) of the first element.

6. Determine the inverse magnification relating the ray coordinates
at the first and second elements.

7. Determine the sag Z(R) of the second element.
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IV. REFRACTIVE INTENSITY PROFILE SHAPING SYSTEMS

Laser beam profile shaping optics are well suited for applications whose
overall efficiency increases when the irradiance over the detector (or sub-
strate) is uniform, such as in compact holographic projector systems (48—50).
These compact holographic projection systems have been reported to offer a
practical way to make a highly corrected mesh or grid pattern over curved
surfaces where the pattern can range in size from sub-micron to multi-
micron. The laser profile shaping optics within a holographic projection
system enables uniform features to be written over substrates of several
centimeters in diameter (25).

To understand this increase in system efficiency when using laser pro-
file shaping optics, note that for a Gaussian beam with irradiance o(r) given
by Eq. (18), the intensity of the beam decreases to 1/ ¢® = 13.5% of its axial
value at the beam radius. The effect of this variation in beam intensity over a
Gaussian beam is illustrated in Fig. 5: (A) shows significant variation in
pattern densities at the center and edge of beam for the same substrate
(film) and exposure time when laser profile shaping optics is not part of
the system, and (B) shows almost uniform pattern densities at the center and
edge of beam when laser profile shaping optics is part of the system.

Therefore, when beam shaping optics are introduced into a holo-
graphic projection processing system (25) as illustrated in Fig. 6, the detec-
tor substrate will be uniformly illuminated, and photochemical reactions
take place at the same rate over the entire substrate area, thus enabling
the full beam diameter to be available for material processing.
Introducing laser shaping optics into holographic projection processing sys-
tems have led to a significant increase in quality of micro-optics fabricated
over the substrate.

In Sec. VI.A, a detailed discussion of the design, analysis, fabrication,
and testing of a two-lens beam shaping system will be presented. Section
IV.B will discuss using axial gradient-index materials to design a laser beam
profile shaping optical system, and Sec. V will discuss reflective laser beam
profile shaping systems.

A. Two Plano-convex Lens Systems

Section II.C describes how to use the geometrical methods of this chapter to
determine the shape* of the curved surfaces of the plano-convex lens system

* The shape of a refracting surface is defined by arrays of data (r, z) and (R, Z) defining the sag
and radial heights of surfaces s and S.
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Figure 5 Interference patterns produced by a four-beam holographic projection
processing system when illuminated with a Gaussian beam. The image on the left
side of the figure was taken near the center of the beam, and the image on the right
side of the figure was taken near the edge (waist) of the beam. The images (A) were
taken when the laser beam profile optics was not part of the projection system, and

the images (B) were taken when laser beam profile shaping optics was part of the
projection system. (From Ref. 24)

shown in Fig. 2. Table 1 summarizes the design parameters of a prototype
laser profile shaping system, which has been designed, fabricated and tested
(23). The lens thickness is not involved in the design differential equations,
but is an important factor to be considered since it is related to the energy
absorption by the optics. The lens thickness of each element has been
assumed to be 10 mm for this two-lens system. Another system parameter,
the distance between the two lenses is important for optical design, fabrica-
tion, and testing of the system. The larger the spacing between the two
elements, the smaller the surface curvature of each element required to
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Figure 6 Holographic projection system. (From Ref. 25)

satisfy the design conditions. However, if the element spacing is too large,
the system will be difficult to assemble and test. The distance between these
elements has been arbitrarily chosen for this system to be five times the
diameter of the lens elements.

The index of refraction of the lenses affects the shape of refracting
surfaces s and S. For this application the lens elements must have a high
transmission for the wavelength of the laser being used [441.57 nm for a
helium cadmium (HeCd) laser] with this profile shaping system. There are
several materials (51) with good transmission properties at 441.57 nm:
acrylic (PMMA) plastic, calcium fluoride (CaF,), crown glass (BK7),
lithium fluoride (LiF), fused quartz, and fused silica. Acrylic plastic is
difficult to polish. Fused quartz, Fused silica, and crown glass are difficult to
machine with a single-point diamond lathe as required in making these
aspheric surfaces. Lithium fluoride contains defects and is difficult to
work with. Calcium fluoride has good transmission properties (~ 95%)
within the range of 150-9000 nm, can be machined with a single-point dia-
mond lathe, and is also the least expensive of this group of materials.
Therefore, CaF, has been selected as the lens material for this laser beam
profile shaping system.

The index of refraction of CaF, is a function (52) of the wavelength of
the light being used:

3 2
A)\
n—l+§ Y2 (57)
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where X is measured in units of microns (um) and
A1 = 0.050263605 um; A, = 0.1003909 pm; A3 = 34.649040 pum;
A; =0.5675888; A, =0.4710914; A3 = 3.848723.

Using Eq. (57), the index of refraction of CaF, has been calculated to be
1.43916 at the HeCd laser wavelength of 441.57 nm.

For this laser profile shaping system, the laser beam is expanded from
16 mm to 25mm in diameter while the beam intensity profile is flattened.
After solving the differential equations, the nonlinear least squares fitting
process of Sec. II.D was used to fit the lens surface data to the conventional
optics surface Eq. (46). The data for surfaces s and S obtained from solving
the differential equations has been fit to many different expressions for the
optics surface equation. More aspheric terms will generally give a better fit
with smaller least squared errors. However, it is easier to fabricate and test
surfaces with a non-zero conic term and a small number of polynomial
deformation terms. The data in Table 2 with non-zero conic constant plus
five deformation terms represents a compromise between fitting accuracy,
optical modeling performance, and ease of fabrication.

1. Analysis of Lens Performance

Using the analytical representation of the primary (s) and secondary (S) lens
surfaces from Table 2 for the laser profile shaping system shown in Fig. 2,
the optical performance of this system has been modeled and compared to
the design conditions of the laser profile shaping system described in Sec. II.

Table 2 Surface parameters of an HeCd (441.57 nm) laser profile shaping
system where the distance between the primary and secondary lens is

150 mm

Lens surface parameters Primary Secondary
Diameter (mm) 30.0 30.0

Vertex radius (mm) 47.861445 113.64905

Index of refraction
Thickness (mm)
Conic constant, x

1.43916 (CaF,)
10.0
—1.1143607

1.43916 (CaF,)
10.0
—1.4877144

Ay (mm3) —7.1532887 x 1073 —2.6322455 x 1076
Ag (mm™) 3.3729843 x 107’ 9.4058758 x 107"
Ag (mm™) —1.4916816 x 107° —2.3096843 x 107
Ay (mm~° 5.9836543 x 10712 1.5839557 x 10712
A, (mm~ ' —1.5166511 x 107 —4.8438745 x 1071
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Applying the flux flow equation (36) to this lens system, the intensity of a
cross-section of the output beam is shown in Fig. 7. A careful computation
of the area under the surfaces generated by rotating around the optical axis
the input and output intensity profiles given in Fig. 7 shows that the total
power is conserved for this laser beam profile shaping system.

The optical path difference (OPD) of the output beam for the laser
profile shaping system defined in Table 2 has also been evaluated over the
aperture. The maximum OPD for this system is 0.0017X, which corresponds
to the absolute OPD of 0.75 nm for the HeCd laser. This demonstrates that
the shape of the output wavefront has the same shape as the input wave-
front, as required by the constant OPL condition discussed in Sec. II.B.

It is interesting to compare the output intensity profiles of the designed
and fitted system more carefully. Using the flux flow equation, the output
intensity profile of the designed and fitted systems are shown Fig. 8.

The label “designed system’ means that the numerical data for the
refracting surfaces, which was obtained from solving the differential equa-
tions, was used directly to compute via the flux flow equation this intensity
profile. The label “fitted system’ means that the system described in Table 2
was used to compute the output intensity profile. It is clear from Fig. 8 that
the intensity profile of the fitted system oscillates at the edge of the aperture,
which is a common problem associated with fitting polynomial functions
near the edge of a data set. This fitting error is less than 0.2%, which can
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Figure 7 Intensity profile of a meridional cross-section of the input Gaussian

beam and the output (uniform) beam for the laser profile shaping system given in
Table 2. (From Ref. 23)
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Figure 8 Comparison of the output intensity profile for the designed and fitted
laser profile shaping system defined in Table 1. (From Ref. 23)

explain the error in OPD of the output beam. This edge fitting problem can
be reduced by designing initially a system with a larger input aperture than
will be used in practice.

It is also interesting to consider how this laser beam profile shaping
system would perform if it were used at a different laser wavelength, \'.
Since the index of refraction is a function of wavelength as given by Eq. (57)
and since these optics have been designed for a specific n()\), it is important
to determine whether a set of laser beam profile shaping optics can be used
for multiple . For example, if the optics defined in Table 2 were used with
a Helium Neon (HeNe) laser with wavelength 632.8 nm, the index of refrac-
tion of the lenses would be reduced to 1.43289. Then, according to Snell’s
law, the light leaving the primary lens would not be refracted as strongly as
the HeCd light. The separation between the two lenses would need to be
increased to accommodate this decrease in index of these lenses to insure
that the light is incident upon the secondary at the appropriate height so
that it will be refracted parallel to optical axis as illustrated in Fig. 9.

Now, we will derive an expression for the lens separation for a
particular ray so that this ray will be incident upon surface S at a suitable
point such that after refraction, this ray will leave the secondary lens at the
appropriate height R to insure conservation of energy and to be parallel
to the optical axis. The new distance d can be calculated from Eq. (29),
since r, R, and z' are known. Equation (29) can be written as a quadratic
equation of (Z — z)

(1= Z =2 +2(R—1):'(Z=2)+(R—r)* (1 =n*2"*) =0 (58)
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Figure 9 Illustrates the relationship between the wavelength and the lens spacing
for a laser profile shaping system. (From Ref. 24)

which has the physical solution

—r n —n?)z’

Once (Z — z) is known, then the corresponding value of d can be determined
by solving Eq. (34) as a quadratic equation for d:

(n* — 1)(n—1)*d* = 2n(n — 1)(n* = 1)(Z — 2)d + (* — 1)*(Z — 2)*
— (W =1D)(R=-r)1?=0 (60)

with the physical solution

WZ -2~ \J(Z =2+ (R 1)

d= n—1

(61)

If the lenses are separated by the vertex spacing d of Eq. (61), then the ray
leaves the secondary lens parallel to the optical axis. However, every ray in
the entrance pupil will require a different lens spacing d. Calculations have
shown that the optical system defined in Table 1 will need a lens spacing of
approximately d = 152.18 mm when used to shape the 632.8 nm HeNe laser
beam profile. The maximum difference between the lens spacing for all rays
is less than 10 um, which is smaller than alignment errors. Therefore, it
seems reasonable to use this laser beam profile shaping system at multiple
wavelengths.
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2. Experimental Results

The two plano-aspherical lenses of Table 2 were fabricated by Janos
Technology, Inc. of Townshend, Vermont, using a single point diamond
lathe; CaF, was used as the lens material. A scanning video system shown
in Fig. 10 was used to measure the input and output beam profiles.

A Panasonic TV camera (Model WV-1800) was used to sample the
laser beam before and after passing through the laser beam profile shaping
optics. The camera was mounted on a translation stage behind a pinhole. By
scanning across the beam, it was possible to use the same region of the
detector for measuring the intensity of all parts of input and output
beam. The image processing software — NIH Image v. 1.44 (53) — was
used to acquire, display, edit, enhance, analyze, and print images.
Reference 24 provides a full discussion of this testing procedure as well as
tolerance analysis and other results not summarized in this section. The
input and output beam profile using the HeCd laser are shown in Fig. 11.

The open diamond symbols are the measured intensity of input beam,
and the solid curve is a Gaussian profile fitted to the input beam data. The
solid diamond symbols are the measured intensity of the output beam, and
the horizontal solid line is the designed output beam intensity. These results
clearly show that the input beam has been transformed into a more uniform
beam. However, manufacturing and alignment errors can be linked to the
variations of the output beam profile from its theoretical value.
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Figure 10 Testing system for laser profile shaping optics. (From Ref. 24)
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Figure11 The input and output intensity profile of an HeCd laser shaping system.
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fit to a Gaussian curve shown as a solid curve. The solid diamond symbols are
measured data points of the output beam. (From Refs. 23 and 24)

The output wavefront shape of this two plano-aspherical lens laser
beam profile shaping system has also been evaluated. Imposing the constant
optical path length condition, as described in Sec. I1.B, requires the output
wavefront to have the same geometrical shaping as the input wavefront,
which is assumed to be planar. The collimated radiation of the input laser
beam has a very small divergence, which means that the beam diameter does
not increase or decrease with propagation within limits of geometrical
optics. For propagation of the output wavefront of this laser profile shaping
system around the laboratory, say 10 m, the output beam diameter remained
constant. To quantify this result, Ronchigrams (54) of the input and output
beams were recorded using the video system described in this section for
recording the beam intensity profile (55). Analysis of these Ronchigrams
indicates that the output beam wavefront has the same shape as the input
wavefront.

In addition, a HeNe laser was used to illuminate these profile shaping
optics, and the predictions of Sec. IV.A.1 have also been confirmed. When
using a HeNe laser with 632.8 nm radiation, the lens spacing was increased
to 152.2 mm according to the predictions of Eq. (61). The input and output
beam profiles are shown in Fig. 12.

The open diamond symbols represent the input beam, and the solid
diamond symbols represent the output beam. These predictions and experi-
mental results confirm the geometrical optics theory of laser profile shaping
systems presented in this chapter.
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B. Axial GRIN Lens Systems

Gradient-index (GRIN) glasses have been shown to be able to provide addi-
tional degrees of freedom for designing optical systems. Sands (56) has shown
that the contributions of an axial GRIN to the third-order aberrations of an
optical system are equivalent to those of an aspherical surface. This suggests
that the aspherical surfaces of the laser beam profile shaping section of Sec.
IV.A can be replaced by axial GRIN Ienses with spherical surfaces. Wang and
Shealy (57) have demonstrated, without taking into explicit account the func-
tional dependence of the index of refraction on the wavelength of light, that it
is possible to design axial GRIN laser beam profile shaping systems with
realistic materials and spherical surfaces. See Ref. 57 for a more detailed
discussion of the results presented in this section.

1. Mathematical Developments

The ray equations for propagation of light through GRIN materials follow
from Fermat’s principle and Eq. (16). For an axial-GRIN material with the
symmetry axis along the z-axis, the ray equations can be written in the
following form (58):

* dz
¥ =) K — 62
X=X+ OLOM’ (62)
* dz
= L - 63
y=yo+ OJ & (63)

20
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with

M= [*(z) = K* = L2 = [n’(z) - K§ — L]
where K, L, M are the three optical direction cosines; K, L, M, are
initial values of the three optical direction cosines of ray within the GRIN
material; and xg, g, zo are the initial coordinates of the ray within the
GRIN material.

The geometrical configuration of a two-lens GRIN laser beam profile
shaping system is shown in Fig. 13.

The optical axis is also the symmetry axis of both GRIN lenses. The
input laser beam will not be deflected by the plano-surface of the first lens,
but will diverge from the spherical surface S;. The GRIN profile of the first
lens will cause the rays at different heights to refract in such a way as to
convert the input Gaussian intensity profile into a uniform intensity profile
at the second lens. The spherical surface S, of the second lens will refract the
rays so that the output beam will be parallel to the optical axis.

Following the discussion presented in Sec. II.A for input Gaussian
laser beam with intensity given by Eq. (18), the energy collected within a
circle of radius r; is given by

" 2
E(r) =2 | ot =T 1 - exp(-271 /13 (64)
0
If the beam reaches a uniform intensity 3 within a circle of radius r, on the
second lens, then applying conservation of energy as expressed by Eq. (19)
gives

2 12
= { gl - o2/} (65)

where X is given by Eq. (21).
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Figure 13 Geometrical configuration of a two-GRIN-lens laser profile shaping
system. (From Ref. 26)
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As shown in Fig. 13, the surfaces S; and S, are two spherical surfaces.
From the surface equations*, the surface sag z; and z, can be written as

V%/Rl

1= - my (66)
or

1 =2zR, — 23, (67)
and

o= Ly (68)

14+4/1—r3/R3

and

13 =22,R, — 23. (69)

The geometrical relations shown in Fig. 13 justify the following expressions:

Iy —n

t’ = 70
ana p—— (70)
cotf, = R, ‘_Zl = Ri—a ) (71)
" Q/2RIZI—Z%
Ry — R, —
coth, = —= 2 22 (72)

2 \/ 2R222 — Z%

Applying Snell’s law at surfaces S; and S, gives
ny(z1) sin 6 = ng sin(6; + «), (73)
ny(z5) sin 6 = ny sin(6, + «). (74)

The GRIN profiles of these lenses can be determined from Egs. (73) and
(74). Applying the sum of two angles trigonometric formula, these equations
can be written as

ny(zy) = ng(cot 6 sin a + cos ), (75)

ny(z,) = ng(cot 6, sin a + cos «). (76)

*From Eq. (46), where k =0 = A4,;,¢c = 1/R, and R, R, are the radii of curvature of the
spherical lens surfaces.
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To evaluate the GRIN profile of the first lens, the right-hand sign of Eq. (75)
needs to be expressed as a function of z;. Combining Egs. (65) and (67) gives

V2 1/2
2= (g5 11— expl-20R - /) ) ()

Solving Eqgs. (77) and (68) for z, as a function of z; leads to the following:

2
20 {1 —exp[-2(Q2Rz — )/} ) /R
. (5 s i) /& (78)

1+ 1= (% (1 - ewl-2(2Rez - )/ ) /] -

The resulting expression for GRIN function of the first lens is

ny(z)) = no{ {(R;Z‘} sin a(z) +Cosa(zl)}. (79)

2
2Rz —Z%)l/

In similar fashion, the GRIN function for the second lens can be written in
terms of z, to give
Rz — I .
nz(Zz) = I’lo{ |:—2]/2:| sSin Oé(Zz) -+ cos 06(22)}. (80)
(2Ryzy — 23)

Equations (79) and (80) are formulas for the GRIN profiles of the two
plano-spherical lenses in a refractive laser profile shaping system. These
results are based on geometrical optics, energy conversion along a tube of
rays, and the constant optical path length condition. Now, these results will
be used to design two GRIN laser beam profile shaper systems.

2. Using GRIN Lenses

The use of GRIN materials in optical systems has been limited by fabrica-
tion capabilities of these materials. Considerable progress has been made
towards better controlling the GRIN profile while also increasing the
change of the index of refraction and the depth of the gradient of the
index (59-63) within the material. Until the recent development of the
GRADIUM™ GSF glass family by LightPath Technologies (63), it has
been difficult to obtain an overall index change larger than 0.08 and a
depth of the gradient greater than Smm. It is possible to obtain linear
and near-parabolic GRIN profiles. For the designs presented in this section
(57), these constraints have been used — maximum overall index of refraction
change is 0.08 and the depth of the GRIN gradient is 5mm. As GRIN
technology improves, optical designs for laser profile shaping systems will
be able to use a broader spectrum of materials to reduce size and cost of
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laser beam profile shaping systems. For example, the GRADIUM™ GSF
glass family from LightPath Technologies (64) has an overall index of
refraction change ranging from 0.04 to 0.14 for a thickness of the gradient
ranging from 6 to 26 mm. With this expanded range of parameters, more
versatile GRIN laser beam profile shaping systems can be developed.

Using Egs. (79) and (80) the GRIN profiles of a two-lens laser beam
profile shaping system shown in Fig. 13 can be computed for any set of
layout parameters including the lens spacing ¢ and the spherical lens surface
vertex radii R; and R,. However, only GRIN materials with realistic
gradient-index profiles can be used when building a laser beam profile shap-
ing optical system. For a particular case, when the input and output beam
radii, ry and rypn.., are given, the depth of the gradient Az is completely
determined by the vertex radius of a spherical lens. The relationship between
the depth of the index gradient and the vertex radius is illustrated in Fig. 14.

In summary, smaller the vertex radii yield larger depth of the index
gradient. From the equation of a spherical surface S}, Eq. (67), it follows
that if the depth of the index gradient Az; has a specific value, then the
lower limit on choosing R; will be given by

5+ (Az )2
R, zﬁ. (81)

It is interesting to note that the refraction of rays at different heights from
the optical axis are determined by the vertex radius and the gradient-index
distribution across the beam diameter. The more planar a spherical surface
is (larger vertex radius), then the greater the gradient of the index across the

() &

Figure14 Relations between vertex radii and depth of the gradient-index material.
(From Ref. 26)
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surfaces S| and S, will be for achieving the same deflection of the rays. That
is, the overall index change An, which can be fabricated, sets the upper limit
for choosing the vertex radii R; and R,.

The spacing d between the two lenses also affects the gradient-index
profile. Shorter systems require stronger index gradients to achieve the same
redistribution of the laser beam profile. Selection of the layout parameters
R;, R,, and d need to be guided by the current gradient-index fabrication
technology. The relationship between GRIN characteristics (An and Az;)
and system layout parameters (R, and d) of the primary lens for the GRIN
laser beam profile shaping system are illustrated in Fig. 15.

A similar plot for the secondary lens can be constructed. Then, for
a given beam waist r, and manufacturing specifications for the GRIN
material (An and Az,), the system layout parameters (R, R,, and ) can be
determined. Two specific laser profile shaping optical systems using GRIN
lenses will be discussed in more details in this section. The first system
transforms the input Gaussian beam profile into a uniform output beam
profile of the same diameter as the input beam. The second system expands
the input beam by a factor of two while also transforming the input
Gaussian beam to a uniform output beam profile.

Consider a laser profile shaping system with layout parameters given
in Table 3 and illustrated in Fig. 16.
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Figure 15 Relationship between GRIN characteristics and laser profile shaping
optical system design parameters. (From Ref. 26)
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Table 3 Layout parameter for a laser profile
shaping system with no expansion of the diameter
of the input beam

System variables Values
Primary lens vertex radius, R, 5 mm
Secondary lens vertex radius, R, 5 mm
Spacing between lenses, d 100 mm
Incident beam waist (radius), ry 114.0 mm
Exiting beam radius, 7.« 4.0 mm
Index of connector, ng 1.5
CEMENTED INTERFACES

v N,
et
— —

LENS1 CONNECTOR LENG2

\ \
\\\

If
h

Figure 16 Layout of a GRIN laser profile shaping system. (From Ref. 26)

For this system, the input and output beam have the same diameter,
which means that the marginal rays (displaced a distance r, from the optical
axis) must not be deflected by the optical components. According to Snell’s
law, a ray will not be deflected by a surface when the index of refraction is
the same on both sides of the interface. This means that there must be a
dense material of index n, connecting the two lenses. The connector in this
design is a glass bar with the same index of refraction as that of the base
glasses used to fabricate the GRIN lenses. Using the layout parameters
given in Table 3, the GRIN profiles of the primary and secondary lenses
have been computed from Egs. (79) and (80) as a function of the radial
distance from the optical axis. These results are shown in Figs. 17 and Fig.
18 for the primary and secondary lens materials, respectively.

Fitting with a least-squares technique the GRIN profiles as a function
of the sag z of each surface gives the following empirical expressions for
ni(z1) and ny(z,):
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Figure 18 GRIN profile of the secondary lens. (From Ref. 26)

n = 1.537910 — 0.036171z, + 0.00882723, (82)
ny = 1.525456 — 0.010882z, — 0.00080123. (83)

The self-consistency of this design of a GRIN laser beam profile shaping
system has been checked by doing a ray trace to compute the intensity of the
output beam. A grid of Gaussian distribution over the entrance pupil was
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used so that the number of rays per unit area represents the intensity of the
beam as it passes through this optical system. The intensity distribution of
the input and output beams are shown in Fig. 19.

It is clear from these results that the input Gaussian beam has been
transformed into a uniform intensity output beam.

Now consider a 2x laser beam profile shaping system with layout
parameters given in Table 4 and illustrated in Fig. 20.

When compared to a non-expanding laser profile shaping system,
beam expanders deflect rays to a greater extent. Therefore, it is important
to choose carefully the system layout parameters (R;, R,, d) so that the
resulting GRIN profile can be fabricated. Unless a dense medium connects
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Figure19 Computed intensity distribution for the input and output beams. (From
Ref. 26)

Table 4 Layout parameter for a 2x laser profile
shaping system

System variables Values
Primary lens vertex radius, R, 5 mm
Secondary lens vertex radius, R, 10 mm
Spacing between lenses, d 150 mm
Incident beam waist (radius), r 4.0 mm
Exiting beam radius, 7 pay 8.0 mm
Index of connector, n, 1.5
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Figure 20 Layout of a GRIN laser expander and profile shaping system. (From
Ref. 26)

the two lenses, the overall index change will be too large for current material
fabrication technologies. Using the layout parameters given in Table 4, the
GRIN profiles of the primary and secondary lenses have been computed
from Eqgs. (79) and (80) as a function of the radial distance from the optical
axis. These results are shown in Fig. 21 and Fig. 22 for the primary and
secondary lens materials, respectively.

Fitting with a least-squares technique the GRIN profiles as a function
of the sag z of each surface gives the following empirical expressions for
ni(zy) and ny(zy):
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Figure 21 GRIN profile of the primary lens. (From Ref. 26)
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Figure 22 GRIN profile of the secondary lens. (From Ref. 26)

m (z1) = 1.600350 — 0.059840z, + 0.01242323, (84)
ny(z,) = 1.567088 — 0.009410z;. (85)

Similarly, the self-consistency of this design of a GRIN laser beam profile
shaping system has been checked by doing a ray trace to compute the
intensity of the output beam. A grid of Gaussian distribution over the
entrance pupil was used so that the number of rays per unit area represents
the intensity of the beam as it passes through this optical system. The
intensity distribution of the input and output beams are shown in Fig. 23.
It is evident that the Gaussian input beam has been transformed into a
uniform output beam.

3. Summary of GRIN Profile Shaping System

The theory and design procedures for using axial GRIN plano-convex
lenses with spherical surfaces has been presented. This is in contrast to
the aspherical surfaces required for constant index materials, as presented
in Sec. IV.A. Two axial GRIN laser beam profile shaping system — 2x
expander and non-expander — have been designed, analyzed, and shown
via simulations to transform a Gaussian input beam into a uniform intensity
profile output beam. Linear least-squares fitting techniques have shown that
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Figure 23 Computed intensity distribution for the input and output laser beams.
(From Ref. 26)

the required GRIN materials to be linear or near-parabolic functions of
the axial distance where the depth of the gradient and the overall index
change are within current GRIN fabrication techniques. As GRIN fabri-
cation technologies improve as illustrated by the LightPath Technologies
(63,64) development of the GRADIUM™ GSF glass family, there will be
new opportunities for building compact and versatile laser profile shaping
systems.

V. REFLECTIVE INTENSITY PROFILE SHAPING SYSTEMS

The geometrical methods of Secs. II and III can also be used to design
reflective laser beam profile shaping systems, which are well suited for
applications involving high-power lasers or using radiation for which the
transmission properties of materials is low. These reflective systems may or
may not have a central obscuration. One- and two-mirror systems with
central obscuration have been used (6-9) for shaping the irradiance profile
of laser beams. McDermit and Horton (6,7) have reported differential equa-
tions for one- and two-mirror systems which transform collimated sources
of known irradiance profiles into a prescribed spatial irradiation over a
known receiver surface. Cornwell (46,47) has developed a general approach
using non-projective transformations to design two-mirror laser beam
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profile shaping systems with either rectangular or polar symmetry. Malyak
(10) has designed a two-mirror unobsured optical system using rotationally
symmetric aspheres to convert an input Gaussian beam into a uniform
intensity output beam. The geometrical methods used to design one- and
two-mirror reflective laser profile shaping systems will be presented in this
section.

In Sec. V.A, the differential equation approach of McDermit and
Horton for designing a one-mirror system to transform a collimated input
beam profile into prescribed illumination of a receiver surface will be
summarized. Next, in Sec. V.B, the non-projective transformations of
Cornwell (46,47) and the differential equation approach of Malyak (10)
have been used to describe the design of two-mirror laser profile shaping
systems with either rectangular or polar symmetry.

A. One-mirror Profile Shaping Systems

Consider the geometrical configuration of a one-mirror laser beam profile
shaping system shown in Fig. 24.

The input radiation is collimated (parallel to optical axis) with a
known intensity profile. The receiving surface is illuminated with a pre-
scribed intensity distribution while the output beam is not collimated.
Unit vectors along the input and output beams are given by

a=Kk (86)
. ) 2'F— (1 — 2Pk
A:a—2n1(a-n1):w (87)
Receiver, S
R
)
r \ Mirror, s
\
) 2 \ / Z(r)
- — >
7

Figure 24 Geometrical configuration of a one-mirror laser profile shaping system.
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where Eqs. (14) and (24) were used. The ray trace equation connecting the
mirror surface s with the receiving surface S in the r—z plane is given by
R—r A, 2Z(r)
Z(R)—z(r) A —[1—z"()]

(88)

where z = z(r) represents the unknown equation of the mirror surface s, and
Z = Z(R) represents the known equation of the receiving surface S.
Equation (88) can be written as

—(R—r)z*+2(Z-2)2'+ (R—r) =0. (89)
Applying the differential energy balance Eq. (10) to this problem gives
1, (r)27r dr = L(R)27R[dR? + dZ°)'>. (90)

where [1(r) is the beam intensity incident upon the first mirror surface, and
I,(R) is the intensity incident upon the second mirror surface. Equation (90)
can be rearranged into the form

-t

Recall that I;(r), I,(R), and Z(R) are known functions of their respective
variables, and z(r) is an unknown function at this point of the analysis.
Also, note that the ray trace Eq. (88) expresses a mapping between surfaces
sand S:

(r,z) = (R, Z2) (92)

which implies that R is a function of r, R(r). From the chain rule for
differentiation of a function of function, the term (dZ/dr) in Eq. (91) can
be written as

dZ dZ dR ;- dR
T aRa 2R (93)
where Z'(R) = dZ(R)/dR can be evaluated directly from the equation of

the surface S, and dR/dr can be evaluated from the ray trace equation (89).
Differentiating Eq. (89) with respect to r gives
dR

dz
r_n N 12 _ " _ ! !
—2zz"(R—=r)—z <—dr 1> +22(Z—z)+ 2z {_dr z }

+ (é—f— 1) —0. (94)
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Combining Eqgs. (93) and (94) leads to

" / dz 12 dR / 12N
22"z (R—r)+(Z Z>]+dr (1-2"7) 17 +2z (I+z)=0.
(95)
However, rewriting Eq. (89) gives the relationship
_ (R B r) 12

(z-2 =211 (9)
which has been used to express Eq. (95) in the following form:

z" 1 dz dR\ (1 — 2'2) 2z } }

i = i + —15. 97

Z! (R—r>{<dr)[(d2) (1+27%)  (1+:27) 7

Replacing the term (dZ/dr) in Eq. (97) with the right-hand-side of Eq. (91)
gives the following differential equation for the mirror surface in terms of
known functions

LA Li(r) (1 [(Z_;)(i;jii)+(liz;lz)}
RENNE,
d.
‘ (98)

Equation (98) is equivalent to Eq. 13 of Ref. 6 and Eq. 3.14 of Ref. 7. When
appropriate boundary conditions are given, then Eq. (98) can be solved for
the shape of the mirror surface which will illuminate the receiver surface S
with a prescribed intensity I,(R) for a given source intensity profile 7;(r).
References 6 and 7 develop an extension of this analysis to two-mirror
intensity profile shaping systems. A number of specific solutions for both
one- and two-mirror systems are given in Refs. 6 and 7 including two laser
beam profile shaping systems:

e uniform illumination of a plane perpendicular to the incident beam
using a one-mirror system for an input Gaussian beam, Fig. 7.3 of
Ref. 7, and

e uniform illumination of a plane on the optical axis with a two-
mirror system for an input Gaussian beam, Fig. 7.9 of Ref. 7.

In the next section, the non-projective transformations* of Cornwell (46,47)

* See section 4.3 for definitions of projection and non-projection transformations.
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will be presented as a geometrical method for designing two-mirror
laser beam profile shaping system for either rectangular or polar sym-
metry.

B. Two-mirror Profile Shaping Systems

In this section, the design equations of a two-mirror intensity profile shaping
systems will be developed. Results in both rectangular and polar coordinate
systems will be presented. For more details and applications of these results,
the interested reader is encouraged to see Refs 10 and 46. Reference 46 is the
original source of the development of non-projective transformations in
optics used to develop the material presented in this section. Development
of the design equations for rectangular and polar coordinate systems will
follow the seven-step recipe of Cornwell (46,47) for non-projective transfor-
mation summarized in Sec. 4.3. The geometrical configuration of non-pro-
jective transformations is illustrated in Fig. 25.

The non-projective transformation represent a mapping between the
input plane and the output beam which takes into account conservation of
energy, constant optical path length of wavefront between the input and
output planes, and the ray trace equations. The input and output beams will
be assumed to be collimated and parallel to the optical axis.

1. Systems with Rectangular Symmetry

The relationship between the element of areas on the input and
output planes is illustrated in Fig. 26 and can be written in the following
form:

]in(x7y) dxdy = out(X7 Y) dxdy. (99)

Laser Profile Shaping

>
L 4

Constant Cptical R
Pzth Langth for
all Fays Z

Figure 25 Geometry of the input plane and output plane of a non-projective
transformation. Either rectangular or polar coordinate systems can be used, depend-
ing on the symmetry of the laser beam profiles and the optical system.
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Figure 26 Symbolic relationship between the input and output element of area in
rectangular coordinates. Conservation of energy within corresponding element of
areas on the input and output planes is one principle used to determine the optical
surface shapes of laser profile shaping systems. The constant optical path length of
all rays passing from the input to the output plane is the second principle used to
determine the optical surface shapes of laser profile shaping system. For two-mirror
systems, the axial optical path length is the geometrical path length L.

where [, and I, are the input and output intensity profiles of the
laser beam. The total energy must also be conserved which is represented by
integrating Eq. (99) over the full aperture of the input and output planes

Iin(xvy) dxdy = J [out(X7 Y) dx dy.

J Full Input Aperture Full Output Aperture

(100)

For laser beam profile shaping systems with rectangular symmetry, assume
that the input and output intensity profiles can be separated into a product
of one-dimensional amplitude functions, as illustrated in Sec. III:

Iin(xay) = ax(x)ay(y)v (101)
Iout(Xa Y) = AX(X)AY(Y) (102)

Allowing for non-uniform shaping of a laser beam profile in two orthogonal
directions, assume that there is an independent and non-uniform magnifica-
tion of the x and y ray coordinates between the input and output planes:

X =m(x)x, (103)
Y =my(y)y. (104)
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The rectangular magnifications m,(x) and m,(y) can be determined by
imposing the incremental expression of conservation of energy, Eq. (99),
for the separated intensity functions, Eqgs. (101) and (102):

Sl [0

a,(x)ay (v) dx dy —AX<X>AY<Y>[ dy. (105)

Rewriting Eq. (105) with terms depending on x on the left-hand side of the
equation leads to separation of variables:

a(x) 1 _ Ay (m,(v)) [8(ymy(y))} :L const
Ay (my(x)) [_8(me(x)_):| a}’(y) dy Cr’ )
Ox
(106)
or,
[a(x’g;i(x»} € A;E"‘niffxw o
Am,(] _ 1 a4
[ dy } © Gy Ay(m,(»)’ 1o

The constant C; is determined from the boundary conditions, such as the
magnifications at the edge of the beam. Integrating Eqgs. (107) and (108)

gives
m(x) = i [Cl L% + Cz} : (109)
mi =5 e | 2t € aw

where C, and Cj are constants determined by boundary conditions, such
as, the magnification of a rim ray, as done in Eqgs. (20). Equations (109) and
(110) are integral equations for the x—y ray magnifications. For many appli-
cations using laser beam profile shaping systems, the output intensity profile
is uniform and solution to either the differential equations (107) and (108) or
the integral equations (109) and (110) is straight forward.

Now, the ray trace equations connecting points on the input plane to
the output plane will be developed. The geometrical configuration of a two-
mirror laser beam profile shaping system is illustrated in Fig. 27.

The unit ray vector A;_, connecting the two mirror surfaces
s[x,y,z(x,y)] and S[X,Y,Z(X,Y)] along a ray path can be written in the
following form:

Copyright © 2000 Marcel Dekker, Inc.



o,y

Figure 27 Geometrical configuration of a two-mirror laser profile shaping system.

(X —x)i+(Y—y—h)j+(L+Z-2k
\/(X—x)2+(Y—y)2+(L+Z—z)2

Ajp = (111)

where L is the distance along the z-axis separating the local coordinate
system on each mirror. The functions z(x,y) and Z(X, Y) are the sag of
each mirror in the local coordinate system of each mirror. Using Eq. (14),
the ray vector connecting each mirror may also be written in terms of the
slope of the first mirror:

B —2z,i— 22},j +(1—-22-2)k

A, =a—2i(a-n) = T Z T ! (112)
RY ¥
where

a=Kk, (113)
_ N _ .C R

P k'] (114)
J1+2+ z%
O=(x, y) z(xx, )

Z="p and z, = gy (115)
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Equating the x—y and x—z components of the ray vector A;_, from Egs.
(111) and (112) gives the following ray path equations:

e %
X—x Y—y—h

(116)

)
-2z, 1—z;— zy

X—x L+Z-z'

(117)

Solving Egs. (116) and (117) z, leads to a quadratic equation with the
following solutions:

(X = )((L+ Z(X, ¥) — 2(x,)))
(X =3+ (Y —y— i)’
L XL+ 2K ¥) — =(00) 4 (=0 + (Y —y = 1)
(X =)+ (Y —y— i) '

Zy =

(118)

Equation (118) is a partial differential equation for the unknown mirror
surface functions z(x,y) and Z(X,Y).

The constant optical path length (OPL) condition provides
another independent condition to be satisfied by the mirror surface func-
tions z(x,y) and Z(X,Y). The OPL for an axial ray and general ray are

given by
(OPL)Axial Ray — V L2 + h27 (119)
(OLP) General Ray

= X34 (Y =y = (L4 Z(X, Y) = 2(0,0)
+Z(X,Y) —z(x,y). (120)
However, the OPL is constant for all rays. Therefore, equating the right-

hand side of Eqgs. (119) and (120) leads to the following expression for
Z(X7 Y) - Z(X,y):

—(x =X = (=Y +h)+ K
2(L + 1)

Z(X,Y)—z(x,y) = (121)

where Iy = \/L?+h?. Using the negative sign in Eq. (118) as the
physically meaningful solution, it has been shown (10) that combining
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Egs. (121), (118), and (116) leads to the following expressions for z,(x, )

and z,(x,y):
x—X
= 122
w=Tr (122)
y—Y+h
Z, = 123
! L+ (123)
Assuming the sag of the first mirror can be written in the form
000) = [2lr) de+ [0 (124)

where z,(x,y) and z,(x, y) are given by Egs. (122) and (123). Then, the sag
of the first mirror can be written as

1 X 1 y
z(x,y) = m {L ull — m,(u)] du+ mjo o[l —my(v)] dv + C4}
(125)

where C, is a constant of integration, and Egs. (103) and (104) have been
used. Expressions for m, and m, in Eq. (125) are found from Egs. (107)—
(110). Finally, an expression for the sag of the second mirror follows from
Eq. (121):

—(x= Y)Y = (y—Y+h+ 1
2(L + ly) x=m; (X)X

y=m; (Y)Y

Z(X,Y) = |z(x, ) +

(126)

where the x and y terms are eliminated from Eq. (126) by solving for the
inverse of the magnifications.

A number of interesting applications of these results are presented in
Refs. 10 and 46. These applications include transformation of a linear ramp
beam profile of one slope to another slope with different offset distances
from the x or y axes and development of an unobscured two-mirror laser
profile shaping system.

2. Systems with Polar Symmetry

A general solution for the shapes of the two mirror surfaces of a rotationally
symmetric laser profile shaping system is given in Ref. 46. In this section, the
results developed in the previous section for rectangular symmetry will be
used to obtain equations for the sag of the two mirror surfaces for a laser
profile shaping system with polar symmetry.

Assuming both the input and output beam profiles have rotational
symmetry, then a ray entering the system at a polar angle § = 6, with respect
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to the x—y coordinate system of the first mirror will leave the system at a
polar angle © = O, with respect to the X—Y coordinate system of the second
mirror. Converting to polar coordinates and setting § = © as a result of
radial symmetry of the beams, then the partial derivatives of the surface sag
of the first mirror are given by

ox dy .
.= —_— S — = — R 12
g = &« ar-I-g} o Lth [r + hrsin 6], (127)
0x oy 1
=8x oy i 12
8o = &« 80+g}, W Ll [hr cos 0] (128)
where
x=rcos#; y=rsinf; X =RcosO; Y = RsinO. (129)

Integrating Eqs. (127) and (128) gives

g(r,0) = 7 j_ 7 {L r'[1 —m(r")) dr’ + hrsin 0} (130)

where m(r) is given by Eq. (56). An equation for the sag of the second
mirror, G(R,0), can be determined by substituting Eq. (130) into
Eq. (126). Alternatively, an expression for G(R, O) follows from geometric
considerations when the input and output beams are parallel to the z-axis.
As a result of symmetry, the surface of the first mirror at the point (r,6) is
parallel to the surface of the second mirror at the point (R, ©), where (r, )
and (R, ©) are connected by a ray. Thus, the partial derivatives of g and G
are equal, that is, Ggp = g, and Gg = gy. Following a similar derivation
leading to Eq. (130) gives

R
G(R,0) = Lilo {JO R'[m™"(R') = 1]dR’ + hRsin@}. (131)

Recall that beam shaping places a constraint on the ray heights as expressed
through the radial magnification given by Egs. (55) and (56).

This completes the analysis of a two-mirror system. To design a
specific two-mirror laser beam shaping system, the radial magnification
function m(r) must be determined. Then, the mirror surface sag functions
are computed from Eqs (130) and (131). Malyak (10) presents specific
examples of a Gaussian input beam being transformed into a uniform
intensity output beam with a smaller diameter. Integral equations for the
sag of the first and second mirror surfaces is given, and several numerical
results for the mirror surfaces are also presented in Ref. 10.
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VI. CONCLUSION

Geometrical methods have been used to design reflective and refractive
optical systems that will transform a collimated input laser beam with a
Gaussian intensity profile into a collimated (expanded or reduced) output
beam with a uniform intensity profile. These laser beam shaping optical
systems have been designed by varying the shapes of two optical surfaces
until the design conditions (conservation of energy and constant optical
path length between input and output beams) are satisfied. It has also
been shown that the gradient-index profiles of two plano-spherical lenses
can be varied to satisfy the design conditions of laser profile beam shaping
systems. In this chapter, the optical design conditions have been expressed in
terms of differential equations, which have been solved to determine the
shapes of the optical surfaces.

For a two-element refractive system, a prototype laser beam profile
shaping system has been designed, fabricated, and tested. Experimental
results confirm validity of the geometrical methods presented in this chapter
for designing laser profile shaping systems. When laser light of a different
wavelength than used for design, a model has been developed for predicting
the change in inter-lens spacing (d-spacing) which is necessary to shape a
laser beam profile with a new wavelength. Experimental results confirm that
a two-element refractive system, which was designed for use with HeCd
(441.57nm) will effectively shape the profile of a HeNe (632.8 nm) laser
when the inter-lens spacing is adjusted.

The methods of McDermit and Horton (6,7), Cornwell (46,47) and
Malyak (10) for designing one- or two-mirror laser profile shaping systems
are presented and discussed in Sec. V.
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I. INTRODUCTION

Recently, the application of machine learning techniques including neural
networks and genetic algorithms (GAs) to optimization problems has blos-
somed. Such techniques hold great promise not only because of their extra-
ordinary efficiency and flexibility but also because they potentially allow the
solution of previously intractable problems. So long as a fitness landscape*
can be well defined, a GA can be unleashed to roam this territory in an
incessant search for the best solutions. The GA must not, however, be
characterized as a mindless automaton that wanders aimlessly about this
terrain. Indeed, the essence of its value lies in the fact that the “... genetic
algorithm [can] yield computer-based complex adaptive systems that can
evolve strategies that no human being ever devised” (1).

Though there are numerous variations of GAs, they all share a central
theme: their search strategy borrows concepts from natural selection and
genetics (2). Once presented with a specific optimization problem, the GA
produces a set of potential solutions. These solutions are referred to as
“organisms” and a set of organisms is a “generation.” GAs typically start
with a randomly distributed seed generation, G(0). For each generation

*Or, using more conventional optics terminology, a multi-dimensional “‘merit function’ which
quantifies the worth of an optical system in terms of the various parameters which define the
system.
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G(t), a new generation, G(¢+ 1) is produced based on the strengths and
weaknesses of G(¢). Organisms are represented by a single string, or chro-
mosome, which is built from the values of the parameters to be optimized
for a particular problem (3). These techniques attribute to GAs several
unique features, as described by Goldberg (4):

1. GAs work with a coding of the parameter set, not with the para-
meters themselves.

2. GAs search from a population of points, not a single point.

3. GAs use payoff...[merit function] information only, not deriva-
tives or other auxiliary knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

This evokes the intriguing thought of employing GAs to find solutions
to problems in optics and optical design where analytical methods are diffi-
cult to apply and other optimization techniques are extremely inefficient or
fail to yield good solutions altogether. As a first step, one must develop a
GA optimization method and apply it to several well-understood problems.
The key to this “proof-of-principle” stage lies in the fact that these problems
have been attacked from a number of different perspectives. Not only does
this provide a basis for judging the efficiency of the GA relative to other
optimization techniques, but also answers the fundamental question “Does
this method work?” For the applications presented in this chapter, a GA
method is developed that can be used to design laser beam-shaping systems
that convert Gaussian input irradiance profiles to uniform output profiles.

The laser beam-shaping system problem can be solved by a number of
different methods, some of which are numerical and some of which are
analytical. Some may even employ a combination of both. Also, there are
several different classes of beam-shaping systems, the most popular being
those using diffractive elements (5-8) and those using refractive elements
(9,10). Reflective systems have also been produced (11). Many of the systems
and methods are discussed in other chapters in this book. The GA method
can be used to optimize most systems of the above classes, which will be
demonstrated in this chapter by the solution of three laser profile-shaping
problems.

A. Scope of Applications

For the first problem, the GA determines the shape of one surface of a
beam-shaping element such that the wavefront of a beam entering the sys-
tem is modified to have a uniform irradiance profile on a surface some
distance away (12). To increase the complexity of the problem a bit, the
beam is shaped such that it is uniform on a spherical surface. Thus, the

Copyright © 2000 Marcel Dekker, Inc.



system is diverging and the non-paraxial aspects of the system must be
accounted for in subsequent irradiance calculations. A similar problem
has recently been addressed in the literature using diffractive elements and
a parametric optimization method (13).

For the second problem, the GA is given two aspherical surfaces to
shape, where each respective surface is part of a separate shaping element.
The GA must do this with the constraints that the outgoing beam is parallel
to the optical (Z-) axis and that it has a specified radius. This problem is
designed to mimic the system designed by Jiang, Shealy and Martin (14)
presented in Chapter 4, Sec. IV.A. This should make for an interesting
comparison of the efficiency of the two methods, in addition to demonstrat-
ing whether multiple solutions to the problem exist.

The final problem presented in this chapter is inspired by a gradient-
index shaping system designed by Wang and Shealy (15). For this problem,
the GA not only must determine shaping attributes such as element thick-
ness and surface shape, but also must choose gradient glass types from a
catalog. Since the glass type can only be chosen from a finite set of values,
the parameters that describe the glass types are discrete. Many conventional
optimization techniques work in a continuous parameter space, since they
are often driven by first- and second-order derivatives. The ability to choose
from discrete parameters is a particularly powerful feature of the GA, rela-
tive to other optimization codes. The GA method here is not a unique
application in optics. Indeed, it should be noted that many other examples
of GA-designed systems can be found in the optics literature (16,17). In the
next sections, the fundamental principles governing GA optimization are
introduced by describing its application to the problems above.

B. Computational Methods for Irradiance Calculations
via Ray-trace Methods

Fundamental to laser beam shaping computations is a fast, accurate means
of determining irradiance (energy per unit area per unit time) profiles at
different locations in a system. To do this, one must start with first princi-
ples: energy must be conserved in a non-dissipative optical system. This
principle is mathematically expressed in the form of the energy conservation
law. The energy conservation law has broad application, from designing
reflective beam shapers via analytical differential equation methods to the
development of finite-element mesh methods for the design of beam shaping
holograms (18-20). To employ energy conservation, one starts by describing
the irradiance profile of a bundle of rays striking the input pupil of a beam
profile-shaping system by a radially symmetric function o(p). These rays
propagate through the beam profile-shaping system (the ““black box’’) and
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exit to strike the output surface. The irradiance distribution on the output
surface is represented by the function u(P). Assuming no energy is dissi-
pated by the system, the energy conservation law (21) must be satisfied:

E=| o0 (p) ¥ o) da= | u(P)E(P) YA (1)
1 0

where E is the total energy entering the system and 7 and O are the input
plane and output surfaces, over which the respective integrations occur.
Also, 0" (p) and n°"'(P) are the normal vectors on the input and output
surfaces, respectively. v""(p) and v°"'(P) are unit vectors along the direction
of an individual ray (striking the input surface at radial height p, and the
output surface at radial height P) at the input and output surfaces, respec-
tively. See Fig. 1 for further elaboration of terms in Eq. (1). da and dA are
derived below. Balancing the radiant energy striking differential ring da with
the radiant energy exiting differential ring dA4, as required by Eq. (1), one
can see that

_ V'(P)) da
M(P) - 0(p) (ﬁout(P) out(P)) dA (2)

To determine the ratio da/dA in Eq. (2), N rays are traced through the
system, where N is a reasonably large number, though not so large as to
be computationally expensive. For this application, N =200 is chosen,
which gives adequate resolution for the input and output profiles. Each
ray enters parallel to the optical (Z-) axis at a specified height, p;, where

Al Beam shaping
ayatemnm

|
& Y l|

N
RNy
U Rl

Output Surface

Figure1 Beam expander with input plane and output surface. The beam profile is
shaped to be uniform on the output surface. (From Ref. 12).
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the set of p; are distributed equally across the radius of the input plane
according to the following function:

p,-(]:/)i, i=0,...,N. (3)

Each ray will exit the system and strike a point on the output surface, as
shown in Fig. 1. At the point where the ray strikes the output surface, P;, the
axial distance from the optical axis, and x;, the angle between the unit vector
normal to the output surface at the intercept point and the optical (Z-) axis,
are measured. Thus, an array with 3N members (three columns: p;, P;, X;,
and N rows) is populated from ray trace data.

One can see in Fig. 1 that dg, is given by 27 p; dp;, where

dp; = p; — pi-1- 4)

The definition of dp; in this manner is arbitrary; definitions such as dp; =
Piy1 — pi or dp; = p;y1 — pi—y would be just as effective. Furthermore, the
subscript i is introduced to emphasize the numerical nature of the solution
to the now discrete function in Eq. (2). Calculation of dA; is somewhat more
complicated, since the output surface is a not necessarily flat like the input
plane. In general, dA4; is given by 27 P; dS;, where dS, is found by referring to
Fig. 2:

ds; = i (5)

/(_Iutpm. Surfaee

~

Figure 2 Determination of d4;. From the figure, one can see that dP; = P; — P;_,
and that dS; = dP;/ cos(x?""). (From Ref. 12).
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Also, it is clear from Fig. 1 and Fig. 2 that

8" () - v"(p) = cos(i" (o)) (6)
and
1" (P) - v*"(P) = cos(i®"'(P)). (7)
Combining these observations with Egs. (2)—(5), one has
_ cos (i) pi(pi — pi1) cos(x{™)
v = ““’"’( cos ()PP, — P) ) )

In the examples presented in this chapter, the input irradiance is assumed to
be Gaussian, measured in units of rays per unit area:

a(pi) = exp(—ap}), )
where « is a unitless quantity given by 2/ p?v. Here, the beam waist of the
incoming beam is expressed by py, and is defined as the radius of the circle
where the irradiance drops to 1/ ¢* of the central irradiance. The N rays that
are traced through the system are distributed uniformly over the input plane
according to Eq. (3). Though it need not be, a Gaussian input profile is
chosen because it describes typical laser profiles when the laser is in the
fundamental mode (TEM,). Eq. (8) expresses the output beam irradiance
in terms of the input beam irradiance times a ratio of areas expressing the
beam expansion as a result of ray propagation through the optical system.
Egs. (8) and (9), along with the ray trace array, provide an accurate means
of calculating the beam profile over any reasonable surface. The accuracy of
this method has been verified by calculating the profiles for several bench-
mark systems (14,15). Calculations of output beam profiles using Eq. (8) are
in close agreement with the profiles given in the benchmark papers. Now, a
merit function can be developed based on Eq. (8) which allows the GA to
distinguish between systems with uniform intensity profiles (which
are desired) and non-uniform profiles. This is done in the sections that
follow.

Il. THEORY AND OPTIMIZATION

Generally, the idea behind optimization is that one has some function f
which may be evaluated easily—usually computationally. This function is
expressed in terms of several variables which may be discrete or contin-
uous in nature. One wishes to find the values of these variables which
make f assume either its maximum or minimum value. The difficulty of
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the problem is related to whether one is searching for local extrema, of
which there may be many, or the global extrema, which represent the
absolute best solutions. The complexity of the problem is related to the
number of variables which make up f, in addition to the ease with which
f can be calculated (22). The greater the complexity of the problem, the
longer it takes to arrive at a solution. Thus, search algorithms which
arrive at solutions quickly are to be coveted, which is evident by the
voluminous amount of research regarding the subject present in the lit-
erature (23,24). In this chapter, the GA search method is presented as
one of these treasured methods, but it should be noted that other algo-
rithms exist which produce similar, if not superior performance. Two
popular alternative methods, simulated annealing and the Tabu search,
are discussed below.

A. Overview of Iterative Computational Optimization
Methods

Though there are myriad optimization techniques to choose from, methods
such as GAs and simulated annealing are of particular interest because of
their ability to solve combinatorial minimization problems. The key feature
of such problems is that one or more of the parameters that make up the
merit function (which is to be maximized) are discrete, in the sense that they
can assume only particular values from a pre-defined set of allowable values.
Thus, instead of an N-dimensional space made up N continuous para-
meters, one is presented with a parameter space whose complexity is facto-
rially large—so large in fact that it cannot be completely explored (25).
Without a continuous merit function, concepts such as “downhill” and
“uphill” lose their meaning and other optimization techniques, such as
the simplex method (26) can no longer be applied. For example, in the
problem presented in Sec. II1.B, the glass types of the lens elements in the
system are chosen from a fixed set of gradient-index materials found in a
manufacturer’s catalog. It is here that GAs and simulating annealing tech-
niques excel, though they also can be applied to problems that are
purely continuous as well. In the literature, there are numerous examples
of problems solved using these techniques (27,28), as well as research that
compares the performance of one or more of these methods on the same
class of problems (29-31). It seems that of the three methods discussed here,
no one method is necessarily more efficient than the others, though it
does appear that GAs and the Tabu search tend to arrive at solutions
more quickly than simulated annealing methods, at least in the papers
cited here.
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It should be noted that several commercial optical design and analysis
packages implement these techniques in their optimization routines to vary-
ing degrees. OSLO*, for example, uses an ‘adaptive simulating annealing’
method. ZEMAXY and CODE Vi also contain proprietary global optimi-
zation methods. The problem with these implementations, among other
things, is that the merit functions in these packages are oriented towards
imaging systems (ZEMAX, however, allows for user-defined merit functions
computed by macros or an external programming interface), limiting one’s
ability to manipulate the merit function for one’s own purpose. Also, since
the makers of these packages keep their optimization codes proprietary,
one’s ability to tweak those routines is all but eliminated. More ambitious
goals like parallelization of the optimization code (see Sec. II.C) becomes
extremely difficult, at best.

B. Genetic Algorithms

Since GAs are based on a biological paradigm, a lot of the GA nomencla-
ture is borrowed directly from evolutionary biology. The reader may find it
useful to have some of this jargon expressed in terms more familiar to the
optics community. As discussed in Sec. I, GAs produce a finite number of
test solutions to a problem. Individually, these solutions are referred to as
“organisms” (or just “individuals™), and collectively as a “‘generation.” A
generation is essentially an iteration. With each iteration, the merit function,
M, is evaluated for each member of the generation. There may be as few as
five or as many as hundreds of individuals per generation, depending on the
code used and how it is configured. In the applications presented in this
chapter, there are typically five or ten individuals in a generation. A new
generation of child systems is produced from the genetic material of the
parent generation (the specifics of this process are described below). An
individual’s genetic code represents a particular system prescription. For
example, in the beam shaper/projector example presented in Sec. IIL.A,
the six parameters that collectively define one surface of the beam-shaping
element are concatenated into a string (i.e., genetic code). Thus, with each
iteration, five or ten new system prescriptions are produced and their respec-
tive merit functions evaluated.

*OSLO is a registered trademark of Sinclair Optics, Inc., 6780 Palmyra Road, Fairport, NY,
14450.

+ZEMAX is a registered trademark of Focus Software, Inc., P.O. Box 18228, Tucson, Arizona,
85731.

$CODE V is a registered trademark of Optical Research Associates, 3280 E. Foothill Blvd.,
Pasadena, CA, 91107.
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The GA method developed here is based on a micro-GA code*T (32).
Micro-GAs have several features which distinguish them from other GA
codes. The most prominent of these features is the fact that micro-GAs can
operate efficiently with small generation sizes (on the order of 10 individuals
per generation). This is important for the applications presented here,
since evaluation of the merit function for each individual is a very time-
consuming process. The micro-GA is able to work with small generation
sizes by checking for “‘stagnancy” in each generation it produces. Stagnancy
is determined by taking the average value of the merit function for all the
individuals in a generation, M (), and comparing it to average merit func-
tions values for N parent generations, M(t — 1), M(t —2),...,M(t — N). If
these values do not differ significantly (a parameter which can be set in the
micro-GA, and is usually “tweaked” at the beginning of a problem to
produce the most efficient code), then the population is defined as stagnant.
Essentially, when stagnancy is detected, the code assumes that the GA is
stuck in a local minimum and attempts to add some randomness to the
process. When such a situation arises, the GA picks the best of the indivi-
duals in a generation, kills the remaining and replaces them with new,
randomly selected individuals in the child generation.

“Reproduction” is defined as producing a child generation of new
individuals from the genetic material of a parent generation. The individual
with the highest value of M in a particular generation is most likely to have
its genetic material passed on to the next generation. The ‘““genetic material”
for a particular individual is defined by concatenating the binary value for
each parameter to be optimized into a binary string (consists of only ones
and zeros). See Fig. 3 for an example. New generations are created by a
“crossover operator’”’, which swaps chunks of genetic material (strings)
between two or more individuals in a generation. With the micro-GA
code, crossovers are done in a manner that maintains individual “alleles”.
An allele is the particular value that a parameter assumes, expressed in
string format (33). When a crossover occurs, the strings that represent alleles
are not broken into pieces, but are transferred from one individual to

*The GA code is based on gal64.f, D.L. Carroll’s FORTRAN Genetic Algorithm Driver. See
http://www.staff.uiuc.edu/~carroll/ga.html to download gal64.f, along with documentation
and useful information on its implementation. One may find several sites related to gal64.f
by using it as a keyword on popular search engines. Gal64.f is based on a Micro-GA method.
See Ref. 32 for more information on Micro-GAs.

1 See the Naval Research Lab’s GA archive, http://www.aic.nrl.navy.mil/galist/, for a compre-
hensive source of GA codes in several different languages and implementations. This site also is
the home of a very useful mailing list in which one may find the state of the art in GA techniques
and theory.
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Figure 3 Example of the genetic material for a single individual. Values (Real*8)
for each parameter are converted into binary strings, which are in turn concatenated
into one long string, the genetic material for that individual (from Ref. 12).
Individual alleles (the values that ¢, k, Ay4,...,A;o assume, expressed in binary
form) are kept intact when crossovers occur.

another intact. Another operation the GA performs is “mutation.” Here,
the GA randomly selects one or several bits in an allele, and changes the
state of these bits. Since the string is binary, this amounts to operating on
the bit with “not” (not 0 = 1, not 1 = 0). Mutation adds a built-in random-
ness to the GA method, which helps the GA avoid local minima. Because of
the stagnancy-checking feature it employs, the micro-GA allows one to
avoid the constant tweaking of GA parameters (e.g., crossover and muta-
tion rates) which is often necessary with other GA routines. The flowchart
for this GA, referred to as the sequential GA, is shown in Fig. 4.

C. Parallelization of Genetic Algorithm

Given that the total execution time for the problems discussed in this chap-
ter is nearly seven hours, it is important to increase the efficiency of the GA
method. This can be accomplished by having the code execute in parallel,
something facilitated by the nature of the GA. Parallel implementations of
GA codes are common in the literature, and several different strategies for
parallelization exist (34,35). The two most popular strategies are described
below.

For the first strategy, it is interesting to note that, generally, the most
computationally intensive step of the optimization process involves the eva-
luation of the merit function. In these applications, this involves calling
optical simulation or optical design packages, such as CODE V, which
are external to the GA code itself. For example, in Sec. III.A, the evaluation
of the merit function involves calling CODE V and tracing N = 200 rays for
each system. The calculation time for a single generation with 10 individuals
takes about 9s (on a Sun Ultra 1 170 with 64M of RAM). Of this, about 8 s
on average is spent in CODE V. The evaluation of the merit function step is
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Figure 4 Flowchart of the sequential micro-GA. For definitions of reproduction,
mutations, cross-overs and stagnancy see Sec. I11.B.

an obvious candidate for parallelization. A potential parallel scheme is one
where the GA executes sequentially on one machine, the master node, until
it reaches the point where the merit function is to be evaluated. Here, the
master initiates processes on each of the slave nodes. The slave nodes, in
turn, evaluate the merit functions for individuals in the generation given to
them in parallel and return the results to the master. Once all the merit
functions are evaluated, the GA code runs normally on the master and
executes all GA-related operations, producing the next generation. This
parallel scheme, known as the Standard Parallel GA Paradigm, is shown
in Fig. 5, along with an alternative parallel scheme, which is explained
below.
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Figure 5 Two parallel GA paradigms. In the first setup, the standard GA para-
digm (a), the GA is executed sequentially on the master until the step where the merit
function is evaluated. At this point, the merit function is evaluated in parallel on the
slave nodes. In the second setup, the subpopulation parallel paradigm (b), the GA
executes normally on several.

An alternative scheme, the subpopulation parallel paradigm, essen-
tially runs independent instantiations of the GA code on each node. With
time, different nodes produce different best individuals with varying degrees
of fitness. The best individuals are periodically sent to a central bookkeeping
node, the “integrator.” The integrator finds the ‘“best of the best” and
distributes this champion to the other slave nodes, where the genetic mate-
rial of this champion is assimilated by the local subpopulation. If there are
enough nodes, each subpopulation can execute on a pod of machines using
the Standard Parallel GA Paradigm outlined above. Thus, one must test the
efficiency not only of the two paradigms individually, but also a hybrid
scheme that incorporates both paradigms.
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One could run the parallel GA (PGA) on an inhomogeneous cluster of
workstations on the 10/100 Mbps local-area network. Message passing
among nodes could be accomplished using the MPI-2 (36,37) libraries, mak-
ing the PGA code casily scalable to high-performance massively parallel
systems. For most research, however, scaling to parallel supercomputers is
not feasible since evaluation of the merit function for common problems
requires calling proprietary software packages such as CODE V, for which
the source code is not (freely) available* (38). If problems are chosen where
all source code is available, including that for evaluating the merit function,
the GA can be ported to a supercomputer environment with (relatively) little
modification.

lll. APPLICATIONS

One key feature of the GA method is its broad applicability. Using the
theory and tools developed above, one can adapt the GA to solve a multi-
plicity of problems. The problems presented below are chosen not only to
demonstrate this advantage, but to do so while building a logical, concise
method that scales from simple to more complex applications. Furthermore,
these problems are chosen from current literature and provide a means to
compare the solutions generated by the GA with solutions generated by
other methods. Hopefully, this will provide insight into where the
application of GA methods is appropriate and where they are of little
advantage. The three problems chosen here are design and analysis of a
beam shaper projector, design and analysis of a gradient-index shaper,
and design and analysis of a refractive two-lens shaper.

A. Design and Analysis of a Beam Shaper/Projector

The general goal here is to modify the shape of a lens element (the ““shaping
element”’) to uniformly illuminate a spherical surface some distance away.
See Fig. 6 for a ray trace of the system. For this particular application, the
use of a GA is perhaps a tad overzealous, considering that other more
established design methods could be employed to produce solutions both

*It should be noted that there is at least one optical design package for which the source
code is available. KDP can be downloaded in compiled form for no charge from http://www.
kdpoptics.com. The full source for KDP is available for a reasonable price. Conceivably, one
could use KDP for the ray-tracing aspects of the merit function evaluation, and modify the
KDP source code so it can be compiled in a supercomputer environment.
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Figure6 Beam-shaping system with ray trace showing the density of rays increases
at the periphery of the output surface, as one would expect to compensate for the
Gaussian nature of the input beam. Both the thin lens element and the shaping
element are shown. The shaping element is determined by the GA. (From Ref. 12).

easily and efficiently. The goal, however, is a long-term one: the GA tech-
nique will be used to attack systems that are difficult to solve with more
conventional methods. For example, certain holographic projection systems
have fitness landscapes with 20 or more dimensions and extremely complex
merit functions, making their solution with conventional methods very
tedious (38). For the short term, it must be established that the GA techni-
que produces good solutions in a reasonably efficient manner. This is
accomplished by the application of the GA technique to simple, well-under-
stood systems. The insights gained by this application will provide a picture
of the fundamental mechanisms that govern this and the nuances involved in
its proper implementation.

The application of a GA generally must satisfy two prerequisites.
First, one must identify those parameters that fundamentally characterize
the system. The parameters must be numerically quantifiable and the mod-
ification of these parameters should have direct consequence on the system
itself. Second, one must identify those features of a system which best
describe the fitness (or ““merit”) of the system. This could be one particular
attribute, such as focal length, or, on the other extreme, could involve
the blending of many different attributes, each with different weights of
influence.
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In the application of the GA to the beam profile-shaper, one surface of
a refractive lens is modified such that the irradiance profile over a spherical
image surface is uniform (that is, u(P) = constant in Eq. (2)). The rotation-
ally symmetric lens surface is characterized by the conventional surface
equation used in optics:

o 5 g
z(h) = + Asih”, 10
) 1+ /1= (14 k)2 ]; Y (10)

where z is the sag of the surface, c is the curvature of the surface, k is the
conic constant and Ay, ..., Ay are aspherical deformation coefficients. z is
an even function of 4, the surface radial distance from the optical axis. The
choice of this function allows the GA great flexibility in determining the
shape of the lens surface, depending on the number of deformation coeffi-
cients included in the optimization process. One might speculate that the
lens surface must be highly aspherical, based on results from similar beam
shaping systems, such as that discussed in Chapter 4 and in Ref. 14.
Furthermore, it is desirable to provide the GA with a large (multi-dimen-
sional) parameter space to explore, since this is where GAs are especially
powerful. Thus, the GA is given six parameters to optimize: ¢, k, A4, Ag, Ag,
and Ag.

Finally, the GA must be given a means of distinguishing between
good systems and bad systems. In this application, a uniform irradiance
profile over the output surface is desired. The output surface is a
sphere with a radius of R = 84.12cm*. Also, the exit pupil have a radius
of 50cm. To accomplish this, the following merit function is defined as
follows (12):

M = lexp[_s(so — Py, (11)
i
where
R e 12
p= N?:l(u( i) — i) (12)

*Ken Baker of Optimetrix Co. provided the initial specifications and requirements for this
system. Optimetrix is located at 13659 Victory Boulevard, Van Nuys, CA, 91401. The final
system has been fabricated by Optimetrix as part of a holographic projection system. See KM
Baker, Highly corrected submicrometer grid patterning on curved surfaces. Appl Opt 38:339—
351, 1999.
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and
1 N
ﬂ:NZu(P[). (13)
i=1

In Eq. (11), Py is the radial height (as measured from the optical axis) of the
marginal ray on the output surface, which defines the exit pupil in this case.
The exponential function is chosen since, for this problem, one wants the merit
function to peak sharply at Py = 50cm. The exponential accomplishes this
nicely, but functions other than the exponential may have been chosen for the
same purpose. s determines the sensitivity of the merit function to the exit pupil
radius constraint: the smaller the value that s assumes, the more prominent the
exponent becomes. In this example, s is set to 0.01. This value is adjusted on
occasion while the GA is executing to insure that the pupil radius constraint is
satisfied. In Egs. (12) and (13), # is the “mean” of the values of the output
intensity function, u(P;) over N points on the output surface. As the beam
profile on the output surface becomes more uniform, y approaches zero, and
M increases substantially. Also, as the exit pupil, which is measured by Py,
approaches 50 cm, the value of M peaks as a result of the exponential in Eq.
(11). This is illustrated in Fig. 7. Systems with the desired characteristics—a
uniform beam profile on the output surface and an exit pupil of 50 cm—will
have higher values of M, which is precisely what is required. The GA will find
those systems with the highest value of M.

The beam shaping element consists of two surfaces. The first surface is
flat and the second surface, of course, has its shape determined by the GA.
The GA starts by randomly choosing, within pre-determined constraints,
values for the six surface-shape parameters to be optimized. In each genera-
tion, ten individuals are produced (see Sec. II.B for explanation of GA
nomenclature). The parameters for each individual are passed to a ray-

Figure 7 Merit function versus p and Py. N = 200 in this system. (From Ref. 12).
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tracing routine (CODE V is used for ray tracing in this application) where N
rays are traced and the value of the merit function, M, is calculated for each
individual as above. See Sec. VI for an example of a CODE V macro used to
evaluate the merit function and call the GA library. The constraints on each
of the surface-shape parameters are given in Table 1.

The GA code was executed simultaneously on four Sun Sparcs, all
running Solaris 2.6. The constraints were modified in real time so that
each instantiation of the GA code could search different regimes of the
parameter space. Once it became apparent that a particular regime con-
tained better solutions, the constraints were narrowed on all machines to
search that regime more thoroughly. The constraints given in Table 1 repre-
sent the final values of these constraints. Also, when one machine found an
individual that was substantially superior to the best individuals on the
other three machines, the code on the three other machines was re-initialized
using a restart file from the machine with the superior individual. This
amounts to a primitive form of parallel processing, an issue which will be
better addressed in future applications (see Sec. I1.C). Total processing time
was not rigorously recorded but was on the order of 12 hours. The fastest
machine of the four, a Sun Ultra 1 170 with 64M of RAM, found the best
individual. The search was stopped when no significantly better individuals
were found over a period of 5 hours, so the best individual actually was
discovered after about 7 hours of processing time.

The final profile-shaping system is shown in Fig. 6, with the GA-
determined shaping element shown in Fig. 8. In Fig. 6, one notices that
the GA-determined shaping element is actually the second element in the
system; the first element (the ““thin lens element”) is an artifact of the initial
design requirements and is not part of the optimization process. The pur-
pose of the thin lens element is to focus the incoming collimated beam such

Table 1 Constraints on surface parameters.
Each parameter must be between or equal to
the end points of the respective constraint.

Surface

parameter Constraint

¢ —10 to 20

k ~10to 0

Ay —1.0x 107 to 1.0 x 10°
Ag ~1.0x 107 to 1.0 x 10°
Ag —1.0x 107% to 1.0 x 10°
Ao —1.0x 1077 to 1.0 x 107
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surface

‘ GA-determined

Figure 8 Shaping clement showing aspherical surface, which is determined by the
GA. The axial thickness of this element is 6 mm (from Ref. 12).

that the numerical aperture of the shaping element is 0.7. The two surfaces
of the thin lens element are spherical and the shape factor is set such that
spherical aberration is minimized (39). The general parameters for the sys-
tem are given in Table 2, along with specific parameters for the shaping
element and thin lens element in Table 3. The shape of the input beam
profile is shown in Fig. 9. It is assumed that the laser beam is circular and
is operating in the fundamental mode, TEM,. In Fig. 10, one can see that
irradiance on the output surface is nearly uniform, with a average value, i,

Table 2 Beam shaper/projector system parameters

Parameter Value
Wavelength 441.57 nm
Radius of the input beam (entrance pupil diameter) 3.9441 mm
Radius of the output aperture 52.5mm
Glass type for two lens elements Ohara slah53
Index of ambient medium (air) 1.0

Gaussian constant « in Eq. (9) 0.129 mm 2
Object distance Infinity
Image distance from shaping surface 242.9 mm
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Table 3 Beam shaper/projector lens element parameters

Thin lens element Shaping element

Left Right Left Right
Parameter surface surface surface surface
Aperture radius 8.0mm 8.0mm
Thickness 1.0 mm 49.1 mm 6.0 mm 242.9 mm
Vertex radius (1/¢)  36.606 mm  359.72mm infinity 14.235mm
Surface type spherical spherical spherical  aspherical
Conic constant (k) 0.0
Ay —0.66411 x 107> mm
Ag 0.12400 x 107> mm
Ay —0.31156 x 10" mm
Ao —0.61495 x 10~* mm

of 2.13 x 10~ rays/mm?. To check for self-consistency, the irradiance
functions, o(p) and u(P), are integrated over the input plane and output
surface, respectively. The results of these integrations are in close agreement,
as expected. The uniformity of the output profile can be characterized by the
standard deviation from the mean value of the N points that determine the
output profile. The standard deviation for this data set is
3.78 x 107> rays mm?, which is 1.9% of .

The GA method produced the desired system—that is, a system with a
uniform irradiance profile on the spherical output surface and with an exit
pupil very close to 50 mm—in a reasonably efficient manner and while
requiring virtually no user input. The GA started with a randomly defined
system and found a good solution in about 7 hours. The self-consistency
check, which involves integrating the input irradiance function, o(p), over
the input plane and integrating the output irradiance function, u(P), over
the output surface, indicates energy is conserved as required by Eq. (1). The
small difference in the two values (1.9% error) can be attributed to small
deviations from the mean (#) in the output irradiance profile data set, as
shown in the previous paragraph. Nevertheless, this error would certainly
fall within an acceptable range of fabrication for an aspherical surface such
as those in this problem (40).

This application illustrates the ability of GAs to solve difficult pro-
blems, suggesting the GA may be useful in solving more complex and vexing
problems in optics. The efficiency of the GA method can be enhanced by
introducing parallelism into the GA code. The most computationally expen-
sive step in the GA routine is the calculation of the merit function, which
requires N rays to be traced through the system for each individual in a
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Figure 9 Input beam irradiance profile. The l/e2 diameter of the input beam is
7.882 mm. Integrating o(p) over the input plane yields 21.1 units, a quantity which
must be conserved according to Eq. (1). (From Ref. 12).
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Figure10 Beam profile on output surface. The radius (Py) of the output surface is
52.5mm. The mean value of the profile, #, is 2.13 x 1073 rays/mmz, with a standard
deviation of 3.78 x 107>, Integrating this mean value (u(P) = constant = i) over the
output surface yields a value of 20.7 units (from Ref. 12). The beam profile is radially
symmetric.
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generation. This is done in serial and no other part of the code can execute
until the merit function has been calculated. If merit functions for various
individuals are calculated in parallel on several slave machines simulta-
neously, allowing the GA to run unfettered on a master machine, the effi-
ciency of the overall search process could be enhanced significantly.

B. Design and Analysis of a Gradient-Index Shaper

The beam shaper/projector problem presented in the previous section pro-
vides an example of a purely continuous merit function. Continuous merit
functions can be solved by a number of different methods, and solving it
with a GA is not particularly glamorous. As an example of a more complex
problem—one difficult to solve using more conventional methods—the GA
technique is used to design a gradient-index shaper, which has a merit
function that contain both continuous and discrete parameters. This pro-
blem was solved using a differential-equation design method in a paper by
Wang and Shealy (15). Though Wang was able to produce several perfectly
good solutions, the gradients of the lenses reported in Ref. 15 were deter-
mined solely by solving the differential equations, and no constraints were
imposed that required the indices of refraction of the lenses to correspond to
those that can be found in common glass catalogs. It follows that a challen-
ging problem for the GA would be to create a laser shaping system with two
gradient-index elements as Wang did, but to do so with the added constraint
that the elements can only be chosen from existing glass catalogs. Obviously,
this makes the potential for fabricating the system the more easily realized.
Furthermore, this is an interesting problem from the perspective of the GA
since it is now required to optimize discrete parameters in addition to con-
tinuous parameters, adding several nuances to the coding.

The general layout of the gradient-index shaping system is inspired by
Wang’s system (see Fig. 11). Essentially, there are two shaping elements,
each of which are made from a gradient-index glass. The right surface of
each shaping element is spherical. The precise shape of the spherical surface
and the thickness for each shaping element are optimized by the GA.
Furthermore, there is a “connector” between the two shaping elements
that is set a priori to be Schott BK7 glass type. The “connector” in
Wang’s system matches the base index, nj, of the two gradient elements
(see Sec. IV.B in Chapter 4). This is necessary to insure that the marginal
ray passes undeviated through the system (15). No such requirement is made
for the GA problem, so the glass type of the connector can be set with
caprice. The GA is allowed to choose randomly from the Lightpath gradi-
ent-index glass catalog available in CODE V. See CODE V documentation
for more details on this glass catalog. Thus, the GA optimizes the following
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Figure 11 Layout of the gradient-index expander designed by Wang and Shealy
(from Ref. 15). This system provides the inspiration for the gradient-index shaper
problem.

continuous parameters: thickness of element 1, curvature of right surface of
surface 1, thickness of connector, thickness of element 2 and curvature of
right surface of surface 2. Also, the GA optimizes the following discrete
parameters, Lightpath gradient glass type for surfaces 1 and 2 (four
possible types for each surface) and gradient index direction for surface 1
and 2 (may be positive or negative for each respective surface). Of the three
problems presented in this chapter, only this problem has a discontinuous
parameter space. Because of this, derivative-based methods (e.g.
simplex and damped least squares (41) would not be applicable for this
problem.

The merit function for this system is designed with three key features.
First, the merit function includes a term to characterizes the flatness of the
output profile, in the manner shown in Sec. III.A. Second, the merit func-
tion includes a term that insures that each ray is perpendicular to the output
plane, i.e., a collimated output beam. The form of this term is expressed by
the following function:

exp[—(1 - ©)7], (14)
where
0= H'yf (15)
i=1

~; in the above equation is the cosine of the angle that ray /i makes with the
optical axis. The exponents adjusts the sensitivity of the merit function non-
parallel (v # 1) rays. For this application, s is set at six. If each ray traced
through the system is parallel to the optical axis, then © = 1 and Eq. (14) is
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unity. If not, then Eq. (14) is less than one and reduces the merit function,
penalizing the system.

Third, the merit function rewards those systems where the radius (Py)
of the output plane is close to 8.0 mm. This is expressed in the following
function:

exp[—0.01(8 — Py)*, (16)

where Py is the radial height of the marginal ray at the output surface. If
Py is 8.0mm as desired, then Eq. (16) is unity. If not, then the system is
penalized as above. See the Appendix, line 101, to see these terms as they
appear in the code, expressed as a complete function. Descriptions of the
terms in line 101 are given at the end of the Appendix. Building the merit
function in this manner is intended to produce a system that resembles
the systems in Ref. 16, which makes similarities and differences more
apparent.

To solve this problem, the serial version of the GA is employed and
CODE V calculates the merit function. After a total execution time of about
7 hours, the highest value of the merit function (the best individual) failed to
significantly improve indicating no better solutions were forthcoming. The
final system is shown in Fig. 12 and the shapes of the input and output
irradiance profiles, along with consistency checks, are shown in Fig. 13. See
Tables 4 and 5 for the parameters of the optimizing system. Examining this
best individual, one finds that integrating the irradiance functions, o(p) and
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Figure 12 Gradient-index shaper system with ray trace. The materials for Lens 1
and Lens 2 were chosen from a catalog of materials by the GA.
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Figure13 Input and output irradiance profiles for the gradient-index shaper. The
1 /e2 diameter of the input beam is 8.0 mm. Integrating o(p) over the input plane
yields 21.7 units. The radius (Py) of the output plane is 7.56 mm. The mean value of
the profile, # is 0.121 rays/mm?, with a standard deviation of 4.45 x 107>
Integrating this mean value (u(P) = constant = &) over the output surface yields a
value of 21.7 units. Energy is conserved, as required in Eq. (1).

Table 4 Gradient-index shaper system parameters

Parameter Value
Wavelength 589.00 nm
Radius of the input beam (entrance pupil diameter) 4.00 mm
Radius of the output aperture 7.56 mm
Glass type for two lens elements Lightpath GISF
Gradient for first lens element positive
Gradient for second lens element negative
Glass type for connector Schott BK1
Index of ambient medium (air) 1.0
Gaussian constant « in Eq. (9) 0.035mm >
Object distance Infinity

u(P) over the appropriate surfaces yields the same value. Energy is
conserved as expected. The system satisfies all given constraints and per-
forms with the necessary features; thus, the GA has indeed solved the pro-
blem. It is interesting to note that the marginal rays converge inside the
connector, resulting in a very long connector length. Such a long connector
would be undesirable in any system intended for manufacture. By referring
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Table 5 Gradient-index shaper lens element parameters

First lens element Second element
Left Right Left Right
Parameter surface surface surface surface
Thickness 7.75 mm 199.9 mm 7.29 mm 25.0mm
Vertex radius (1/¢) infinity —99.58 mm infinity —58.15mm
Surface type spherical spherical spherical aspherical

to Wang’s system, one notes that the length of the connector is significantly
smaller than the one produced by the GA. This suggests that adding an
additional constraint which limits the length of the connector to some small
value could force the GA to produce a system with collimated marginal
rays. The index of refraction of the connector would also need to be a
variable to satisfy the physical constraint that the marginal ray, defined as
the ray that enters at the 1 /62 point (py = 4.0mm in this case), passes
undeviated through the system.

C. Design and Analysis of a Two-lens Beam Shaper

This system represents the most complex presented in this chapter, where
complexity is related to the dimensionality of the merit-function space. This
problem is inspired by the system designed, built, and tested by Jiang,
Shealy and Martin (14). The system has two lens elements, which are
designed to shape an incoming Gaussian beam to an outgoing beam with
a uniform irradiance profile. The system expands an 8 mm incoming beam
to 12mm. Both incoming and outgoing beams are parallel to the optical
axis. The right surface of the first lens and the left surface of the second lens
accomplish the irradiance redistribution and beam expansion. In Ref. 14,
these shaping surfaces are highly aspherical.

As above, the merit function must contain a term that quantifies
the uniformity of the irradiance profile on an output surface.
Furthermore, the merit function must insure that the outgoing rays
are parallel to the optical axis and that the radius of the output
beam is some predefined value. The precise nature of this merit func-
tion is similar to those described in the previous problems. The GA is
given 12 parameters to optimize in this problem: ¢, k, A4, Ag, Ag, and
Ao for the aspherical lens surface of each of the two lenses in the
system. The merit function for this system has the same form as the
one for the beam shaper/projector system outlined in Sec. III.LA [Egs.
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Table 6 Two-lens shaper system parameters

Parameter Value
Wavelength 589.00 nm
Radius of the input beam (entrance pupil diameter) 8.00 mm
Radius of the output aperture 10.7 mm
Glass type for two lens elements CaF,
Index of ambient medium (air) 1.0
Gaussian constant « in Eq. (9) 0.031 mm™>
Object distance Infinity

Table 7 Two-lens shaper lens element parameters

First lens element Second element
Left Right Left Right

Parameter  surface surface surface surface
Thickness 10 mm 150 mm 10 mm 25mm
Vertex

radius

(1/¢) infinity ~ 100.59 mm —100.01 mm infinity
Surface

type spherical aspherical aspherical spherical
Conic

constant

(k) —0.922971 —0.375469
Ay 0.843226 x 10 °mm  0.617298 x 10~*mm
Ag —0.664541 x 107 mm  —0.960417 x 10~" mm
Ag 0.504624 x 10 ¥ mm  —0.164098 x 10~ mm
Ay 0.274667 x 107 mm  0.687429 x 10~ mm
Ay —0.999878 x 107" mm  0.466018 x 10~'* mm

(11)—(13)], save that “50” in Eq. (11) is “12” in this example (since the
radial height of the marginal ray should be 12mm in this example and
not 50mm). This 12-dimension parameter space is the most complex
presented in this chapter. Consequently, the optimization time for this
problem is significantly longer, taking some 50 hours on the platforms
described above, using the serial processing paradigm. The GA, never-
theless, found a solution, which is presented in Table 6, Table 7, Fig.
14 and Fig. 15.
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Figure14 Two-lens beam shaper system with ray trace. The right surface of Lens
1 and the left surface of Len 2 are shaped by the GA.
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Figure 15 Input and output irradiance profiles for the two-lens beam shaper. The
1 /e2 diameter of the input beam is 16.0 mm. Integrating o(p) over the input plane
yields 86.9 units. The radius (Py) of the output plane is 10.7 mm. The mean value of
the profile, u, is 0.242 rays/mmz, with a standard deviation of 1.86 x 1073 rays/mmz,
or 0.8% of . Integrating this mean value (u(P) = constant = i) over the output
surface yields a value of 87.0 units. Energy is conserved, as required in Eq. (1).

IV. CONCLUSIONS

This chapter demonstrates not only that the GA method can solve problems
in optical design and theoretical optics, but also that the flexibility of GAs
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is great and their range of applicability is broad. After the initial work
optimizing the GA software itself is completed, adapting the basic GA
kernel to solve the problem at hand follows with ease. Future work on
this method lies in decreasing its solution time, which now is on the scale
of several hours for the problems considered. This can be accomplished
through the creation of parallel versions of the code, as described above,
or the implementation of new heuristic models in the GA driver, such as the
Tabu search. In any case, these optimization methods provide a means to
produce solutions unfettered by convention or human influence.
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APPENDIX: CODE SAMPLES

GA macro: ga.seq.1 (CODE V macro language)

W 00 30 Ul b W N B

N e
W O Jo0UDd WN RO

lcl num "merit "meritv(10)

lcl num “par (200,9) *“fun(200) "iv

lcl num "r1(0..200) "r2(0..200) "n(0..200) "srn(0..200)
lcl num "“sum “avg “eprinc “raymiss “nsum

lcl num "i2p "i2s(0..200)

1lcl num "UDGC1l1 "UDGC1l2 "UDGC21 "UDGC22

out n

ver all n

exc n
“eprinc==(epd) /400.
for "iv -1 1000000
if (~iv=0)

tiv == 2
end if

Copyright © 2000 Marcel Dekker, Inc.



20 usr “par “fun “iv
21 l!out y

22 lwri (tim)

23 lwri ‘! rr
24 lout n

25

26

27 for "c 1 10
28

29 thi s2 “par(
30 thi s4 "“par(
31 thi s3 "par(”
32 rdy s3 “par/(
33 rdy s5 “par(
34 *UDGC11 == roundf(*par(“c,6))
35 if ("par(*c,7)>0)

36 "UDGC12 ==
37 els

38 "UDGC12 == -1
39 end if

40 "UDGC21 == roundf("par(“c,8))
41 if (*par("c,9) >0)
42 "UDGC22 ==
43 els

44 "UDGC22 == -1
45 end if

46

47 del prv all

48 prv

49 pwl 589

50 ‘nl’ LPT GRADIUM 1.7
51 UDG

52 UDG C1l ("UDGC11)

53 UDG C2 ("UDGC12)

54 pwl 589

55 ‘n2’ LPT GRADIUM 1.7
56 UDG

57 UDG C1 (°UDGC21)

58 UDG C2 (°"UDGC22)

59 end

60 gla s2 ‘nl’

61 gla s4 ‘n2'
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62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88
89

90
91
92
93
94
95
96
97
98
99
100

"merit ==
“sum ==
“nsum ==

for i1 0 200

"rl("i) == "i*"eprinc
*j = raysin(0,0,0.,"r1("1),0.,0.)
if (73 <> 0)
“raymiss==
els
"r2(7i) == (y s6)
“r2("i) == absf("r2("1i))
"n(*i) == (n s6)
“nsum == ‘nsum * ‘n("1)**6
“srn("i) == (srn s6)
end if
end for
if (“raymiss = 0)
*a == -logf ((PUI))/((PUX)* (EPD)/2.)**2
for i 1 200
“g == "i-1
"k == "1i

“i2p == (Cr1(C)*(Crl1(Ck)-"rl1(°3g))
*expf(-"a*"r1("i)**2) **n("1i))&
/Cr2(i)*("r2(°k)-"xr2("3)))
"i2s (1) ==
("i2p**srn(*1))/((*n("1i)*"srn("1i))
+(sinf (acosf("n("1) ))
*sinf (acosf (“srn("1)))))
! "i2s("i)="i2p*absf("srn("1))
“sum = “sum +°i2s("1)
end for
“avg = “sum/199

for "1 1 200
"merit = "merit+("i2s("i)-"avg)**2

end for

"merit = sqrtf("merit/199)
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101 "meritv(“c)

1/ "merit
* expf (-1*((1 -"nsum)**2))
* expf(-0.01*%((8 -
"r2(200))**2))
102
103 els
104 “raymiss == 0
105 "“meritv(“c)
106 end if
107
108 “fun("c) == "meritv("c)
109
110
111 end for
112
113 end for
114
115 ver y
116

Il
(@)

This appendix illustrates how CODE V can be used to evaluate the
merit function for the Gradient-Index system. The above code is written in
CODE V macro language. Not shown in this appendix is the GA driver,
which is written in Fortran 77. See the footnote on p. 223 for more informa-
tion on the GA driver. To access the GA driver in CODE V, the GA code
was compiled into a library format specified in the CODE V documentation.
See ‘User-defined functions’ in the CODE V manuals for more information.
At line 2, the parameters are defined that provide a communications nexus
between CODE V and the GA driver. The GA is invoked at line 20, where
the parameters defined in line 2 are passed to the GA. The GA interprets the
values stored in the “fun(200)” array, and uses those in its calculations. In
turn, the GA populates the ““par(200,9)” array, which defines a new gen-
eration to be evaluated in CODE V. The “for..end” for loop starting at line
27 and ending at line 111 contains the code that traces the 200 rays for each
of the 10 individuals per generation and, most importantly, evaluates the
merit function for each. The raytrace is done in lines 67-79. The irradiance
profile is calculated in lines 83-92. The precise form of the merit function
can be found in lines 95-105. The first term, ““1/"merit,” is a value propor-
tional to the flatness (uniformity) of the output profile. ““nsum” is a value
related to the angle each ray traced through the system make with the
optical (Z-) axis. As each of these angles approaches 0, *““nsum’ approaches
1. If ““nsum” is one, then it makes no contribution to the merit function.

Copyright © 2000 Marcel Dekker, Inc.



The last term, “expf(-0.01*((8-"r2(200))**2))” is less than one if the radial
height of the marginal ray (“"r2(200)”) is some value other than eight,
penalizing the system. Also note how the gradient glass type is chosen in
lines 47-61. This is a unique feature of this particular gradient-index appli-
cation. The command ‘prv’ at line 48 instructs CODE V to begin a private
(user-defined) glass type. “pwl 589" at line 49 indicates that the private glass
is valid for wavelength A = 589 nm. “UDG C1” and “UDG C2” are the two
discrete parameters that select the GRIN element from the several available
in the CODE V gradient-index catalog. The values are populated from the
variables "UDGCI11 and "UDGCI12, which are set by the GA, in lines 52
and 53. This same process is repeated to define a private glass type for the
second shaping element in lines 54-58. Finally, the individual glass type for
the shaping elements are set to the two newly defined private glasses in lines
60 and 61.
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Beam Shaping with Diffractive
Diffusers

David Renick Brown
MEMS Optical, LLC, Huntsville, Alabama

I. INTRODUCTION

In this chapter, we discuss an approach to beam shaping that often has a
different realm of applications than the more conventional techniques.
Specifically, we discuss what is called a band limited diffuser. Many diffu-
sers, such as ground glass, diffuse light over an angular volume that is often
larger and not as well defined as desired. We will see in this chapter that
diffractive diffusers offer a technique to diffuse light over a very well-
controlled angular spectral band.

In Sec. 11, we describe the properties of diffusers by contrasting their
characteristics with other perhaps more familiar optics. We first compare
them to conventional single diffractive order beam shapers. We then com-
pare them to gratings and develop the theory used to describe the diffuser.

In Sec. 111, we give a very simple yet illustrative design example that
covers a basic technique for the design of a binary diffuser.

Section IV is a discussion of fabrication techniques. In this section, we
describe fabrication limitations and considerations. It is meant to give the
reader an appreciation for what is possible and which fabrication method is
appropriate for a given design.

In Sec. V, we describe the major negative aspect to this beam shaping
technique, which is speckle. We derive the size of speckle and discuss a few
methods for reducing speckle.
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We conclude this chapter with a few of the possible applications for
diffractive diffusers. Section VI also discusses when and when not to use
diffusers for beam shaping.

Il. PROPERTIES OF DIFFRACTIVE DIFFUSERS

To help define the properties of beam shaping with diffusers, it is useful to
describe the differences between the other beam shaping techniques. There
are two general categories of beam shapers, the first of which is a near field
beam shaper.

A. Near Field Beam Shapers (Remapping Optics)

Near field diffractive optics generally use a single diffractive order to pro-
duce the desired optical effect. In general, a diffractive optic such as a grat-
ing can use many diffractive orders. A simple example of a diffractive optic
that uses only one diffractive order is a lens. Near field beam shapers are
much like a complex aberrated lens that performs a re-mapping of the
beam’s energy distribution to provide the desired shape. The shaped beam
will exist only at some pre-defined plane unless a second optic is used to
correct the phase in the beam as shown in Fig. 1. The resulting phase of a
near field beam shaper can be canceled to produce a collimated beam which
is allowed to diverge to give a shaped beam over an extended but finite
range. The corrected shaped beam will experience diffraction and will
degrade as the beam propagates. The diffraction of the corrected shaped
beam will be as if the beam originated from an aperture function that is the
same as the shaped beam. To minimize the diffraction of the edges, it is often
advantageous to design the desired shape of the beam to have soft or
smooth edges (1). The function that is used to describe the soft edge can
have many forms. One such soft aperture function is a high-order Gaussian
or super Gaussian of the following form:

1 oc 2™ (1)

Where I is the intensity, r is the radius, w is the waist radius and N is an
integer. As the value of N increases, the closer the function approximates a
true top hat function.

It is possible to extend the range of a near field beam shaper by
optically taking the Fourier transform (2) of the output as shown in Fig.
2. The lens transforms the shaped beam into its Fourier transform at the
back focal plain of the lens. As the field propagates beyond the back focal
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Figure1 Typical system layout of a near field beam shaper. Only the first optic is
required to shape the beam at plane z = d. To extend the range at which the top hat
will exist requires a second optic to correct for aberrations in the phase of the beam.
The empirical result shown has a non-uniformity standard deviation of 5.6%.

plain, the diffraction caused by the propagation transforms the field back
into the shaped beam with a spherically diverging phase. This creates a
diverging cone of light whose intensity envelope has the desired shape.
Experimental results of this set-up for a round super Gaussian are
shown in Fig. 2. The structure that is observed in the measured result is
caused by multiple reflections within the system due to optics that do not
have anti-reflection coatings. The beam can then be collimated at any point
by selecting the appropriate lens. This also allows one to size the output
beam.
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Figure2 System to transfer the shaped beam into the far field. A simple lens with
the appropriate focal length can be added after this system to re-collimate the beam.
The measured results shown was taken approximately 300 mm beyond the Fourier
transform lens and is approximately 1 cm in diameter. The structure in the beam is
from multiple reflections within the system.

Due to the re-mapping nature of a near field beam shaper, the output
is highly sensitive to the intensity and phase of the input beam. Any devia-
tion in the input beam size, shape or location relative to the near field beam
shaper will cause degradation to the resulting output. Figure 3 shows the
output intensity of a simulation of a Gaussian to square top hat beam
shaper. There are several methods for designing the beam shaping diffractive
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Figure 3 Simulation results of the output intensity of a Gaussian to square super
Gaussian top hat beam shaper. (a) The result with the perfect input beam. The
output is >99% efficient and the peak-to-valley non-uniformity is <2%. (b) The
result with an input beam that is 5% too large. The peak-to-peak non-uniformity
is ~18%.

optic (2,3). Commercially available ray tracing computer codes, such as
ZEMAX and Code V, can be used to design the beam shaping optic if
one is careful to include diffraction effects. The results in Fig. 3 were simu-
lated using a scalar wave propagation computer code which accurately
models diffraction effects. Figure 3a is a plot of the output intensity with
a perfect input beam. The peak-to-valley non-uniformity of the intensity of
this top hat is less than 2% and the simulated diffraction efficiency is better
than 99%. Figure 3b shows the output of the same optic with the input
beam 5% larger than the designed beam. The peak-to-valley non-uniformity
of the intensity is now about 18%. From this, we see the sensitivity of the
near field beam shaper to input beam variations. In general, the desired
intensity footprint is maintained over a fairly large range of variations in
input beam. The uniformity of the output intensity is however very sensitive
to the input beam. However, with care extremely good results can be
obtained. In Fig. 4, experimental results for a UV beam shaper for a litho-
graphy application are shown. The non-uniformity (¢/u) was measured at
less than 3% where o and p are the standard deviation and mean of the
intensity respectively.

B. Far Field Beam Shapers (Gratings, Diffusers)

A diffuser falls into the second category of beam shapers, which is far field
beam shapers. Far field diffractive optics such as gratings and diffusers can
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Figure 4 Experimental results of a beam shaper for a Coherent Innova Sabre-7
UV laser (363.8 nm). Non-uniformity (¢/u) was measured to be less than 3%.

in general use many diffractive orders in the case of gratings or spatial
frequencies in the case of diffusers. Far field diffractive optics imparts a
defined spatial frequency distribution to the phase of the laser beam. As
the beam propagates, the spatial frequencies in the phase cause the beam to
interfere with itself. Since the structure of such a device is made up of many
very small phase apertures (typical < 10 wavelengths), the beam is in the far
field almost immediately beyond the optic. This means that the resulting
shape of the beam will continue to propagate with the pre-defined angular
divergence as defined by the spatial frequencies in the phase. Figure 5

‘ P

A
ﬂhll:ﬂ"ﬂ‘m:\ﬂ“‘w

Figure 5 (a) The phase of the Gaussian to square super Gaussian top hat beam
shaper shown in Fig. 3. (b) A portion of the phase of a diffuser that projects a square
energy envelope.
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illustrates the extreme differences in the phase of a near field (single order)
optic and a far field (multiple order) optic. Figure 5a is the phase applied to
the input field to generate the shaped beam shown in Fig. 3. Figure 5b is the
phase of a diffuser that projects a square pattern.

Far field optics have the advantage of being relatively insensitive to the
shape, size, and alignment of the input beam. An input beam that isa TEMO00
mode will produce a very similar output to an input beam that is a TEMO1
mode (4, 5). This is due to the multiplicative property of a Fourier transform.
The resulting beam of a far field optic is simply the convolution of the Fourier
transform of input beam and the spatial frequencies of the optic. As we will see
later, the energy envelope of the output pattern is dominated by the phase
function of the diffuser and not the shape of the input beam.

Since gratings and diffusers are both far field diffractive optics they
share many characteristics. It is useful to describe a diffuser in terms of a
grating due to its familiarity with most readers. In general, a grating is a
periodic amplitude and/or phase structure. For the purposes of this discus-
sion, we will limit a grating to a phase only structure.

By starting with the differential form of Maxwell’s equations, and
making simplifying assumptions for a homogeneous medium, one can arrive
at the homogeneous wave equation for the electric field (6):

5 O’E

V°E = pe o (2)
where E is the electric field vector, i and € are the material property para-
meters called the permeability and permittivity respectively. A similar equa-
tion exist for the magnetic field. This vector equation can be separated into
three scalar equations, one scalar equation for each component of the coor-
dinate system. Using Cartesian coordinates and choosing the scalar equa-
tion dependent on the z spatial coordinate we have

2 2
PE_1PE_

T 3
0 e 022 (3)

The general form of the solution of equation (3) is (6)
E(z,1) = Af\ (wot — ko.z) + Bf(wol + ko.Z) (4)

where A and B are constants, wy is the angular frequency with the units of
radians/time and k. is called the propagation constant with the units of
radians/length. Equation (4) is the solution of the scalar equation (3) if

wWo 1

—=—=v (5)

ko \/ ME
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where v is the velocity of the light in the medium. The two terms on the right
side of Eq. (4) describe two waves, one traveling in the positive z direction
and one traveling in the negative z direction. In general, the wave can travel
in any direction. The argument of the first term in Eq. (4) can be written
more generally as wgt — K - r where in Cartesian coordinates

ko = koyX + ko P + ko2 (6)

r=xX+yy+zZ (7)
Equation (4) can be rewritten as

E(xvyvzat):Af(wotfk()'r) (8)

Equation (8) is a wave with amplitude 4 and velocity v traveling in the
k, direction. k; is called the propagation vector or the wave vector. The
direction of the power flow density of a field is equal to the direction of the
propagation vector (4). The magnitude of the propagation vector is given by
4.7

wWo 2w
kol = ko ===~ ©)
where A is the wavelength of the light in a given material. k; is a constant
while the light is propagating in the material. A wave described by Eq. (8) is
often referred to as a plane wave. An arbitrary complex electromagnetic
field can be analyzed in terms of its Fourier components. The Fourier
components of a complex field are simply a series of plane waves traveling
in different directions (5). When analyzing periodic structures such as grat-
ings, it is often advantageous to perform the analysis in the Fourier domain.
Figure 6 shows a circle whose radius is ky. Along the k, axis is a
periodic structure with a grating vector of K, whose magnitude is given by

ky =22

where A is the period of the grating. K, has only an x component and adds
to the x component of the propagating wave in discrete multiples. A gra-
phical illustration of this is shown in Fig. 6. Due to the constraint that the
wave vector has a constant magnitude of k; we see from Fig. 6 that we can
graphically determine the direction of the series of plane waves that result
from the grating

Sin(8") = W (11)
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Figure 6 The wave vector map of light as it is transmits through a periodically
varying structure such as a grating. The lower portion of the plot shows the x
component summations of the undeviated beam (K;) and the grating vector (K,).
The orders of the grating are the result of an integer number of grating vectors added
(or subtracted) to Kj.

which then reduces to the familiar grating equation

sin(6}") = sin(6;) + % (12)
Where 0, is the incidence angle and 6} is the transmitted angle of a given
diffracted order m. Orders (values of m) that require | sin(6;")| > 1 are called
evanescent orders. The wave vector of an evanescent order has an imaginary
z component and thus attenuates exponentially beyond the surface of the
grating (7).

For the “real” orders, the resulting electric field at z = 0 is of the form

E,(x,z = 0) = A(x,0)e/ @M=D) — A(x, 0)P(x) (13)
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where n is the index of refraction of the material, A(x,0) is the amplitude of
the input beam, and g(x) is a periodic phase function whose height is
A/(n—1). In the far field (z = z') Eq. (13) becomes

Eg(kxvz/) = S[Eg(xao)]
= S(A(x,0)] * S[P(x)] = A'(ky,0) + [P(x)] (14)

~

where J stands for Fourier transform, * is the convolution symbol and
k. =kox'/z'. From Eq. (14), we see that the resulting field at z =z' is
simply the convolution of the spatial frequency content of the phase and
the amplitude of the input beam after propagating a distance of z'. If the
divergence of the diffuser (high spatial frequency) is significant, then the
shape of the energy envelope will be dominated by the phase of the diffuser,
rather than the divergence of the input beam.

A grating has very distinct orders due to its periodic structure. The
spatial frequency of the phase is simply delta functions with the appropriate
weighting factors spaced at angular intervals as defined in Eq. (12). If we
now add a second function r(x) with a period much larger than the period of
g(x)(A, > A,)) to the phase in Eq. (13). We see that

Ey(x,z = 0) = A(x, 0)e/CT/N0-DEC+] — A (x,0)P(x)R(x) (15)
The resulting field after propagating a distance z’ then becomes
Ey(ky,z') = 3[Eq(x,0)] = A'(ky, 0) * 3[P(x)] * I[R(x)] (16)

When a second component is added to the phase, the distinct orders become
blurred by the spatial frequency components of the function r(x). By choos-
ing A, and A, appropriately, an apparent continuum of spatial frequencies
may be obtained, resulting in a “‘solid” filled region of light in the far field.

Notice that since A, > A, the period of the diffuser A, is approxi-
mately equal to A,. Thus, if a grating has a large period such that the orders
of that grating, as governed by Eq. (12), are spaced in such a way that the
resulting beams significantly overlap, the angular region will be “solidly”
filled with light. Any two coherent beams that overlap will interfere. This
interference is the source of the speckle indicative in diffuser patterns. The
subject of speckle will be covered in some detail later in this chapter.

Also notice the case that as A, becomes so large that the size of the
input beam is no longer large enough to sample one period of the phase then
the phase is no longer periodic. At this point, the location of the orders is ill
defined since optically the phase is not periodic. This is a result of the fact
that non-periodic functions have a continuum of frequencies rather than a
discrete set of frequencies. However, the phase still has the same spatial
frequency spectrum and thus the envelope of the pattern will remain
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virtually unchanged. This is of course much like a traditional hologram in
that a small piece of a hologram will still produce the same image. We will
see later that as the input beam decreases in size, the speckle pattern
becomes increasingly coarse.

C. Mathematical Description of a Diffuser

To mathematically describe a diffuser, we first note the shift property of the
Fourier transform:

Ak = kyg) & a(x)e 750" = a(x)e PN (17)

When designing optics such as diffusers, it is often useful to define things in
term of a Discrete Fourier Transform. For a calculation grid of dimension
D, the smallest frequency increment is 6f = 1/D (8). Physically, D is the
diameter of the input beam or the period of a grating. Thus, any frequency is
an integer multiple of §f. For example, define a frequency f

N

fo=Nof == (18)

or in terms of the wave number
N
kv = 2mfy = 27T5 (19)

where N is an integer. From Eq. (17) and (19) it then follows that

N
A=— 20
- (20)
Substituting Eq. (20) into Eq. (12), we find that any discrete spatial fre-
quency can be described as
. . NA
sin(6,) = sin(0;) + 53 (21)
Recognizing the fact that D = 6d(M — 1) where 6d is the smallest distance
increment and M is the number of data points across the calculation grid,
Eq. (21) becomes

. . NA
Sln(@,) = Sm(@,») + m (22)
Finally, solving Eq. (22) for N we have
M—1
N = [sin(0,) — sin(6,)] % (23)
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This equation is useful for computational reasons to calculate a particular
grid point number on a discrete Fourier grid to produce a phase function of
a given dimension that will bend light of a wavelength X\ by an angle 6,.

lll. SIMPLE DESIGN EXAMPLE

As a simple illustrative design example, suppose we wish to design a binary
diffuser with a clear aperture of D = 1.0 mm that projects a ring of laser
light with a wavelength of A = 0.6328 um between 1° and 2°. In this simple
design approach we perform the following functions:

Define system/calculation variables.

Calculate spectral limits.

Define ring on a Fourier grid.

Randomize grid.

Take inverse FFT of grid.

Truncate phase to form binary (two-phase level) optic.

7. Verify performance with a scalar wave propagation simulation.

A

First we define our system variables. Let
A =0.6328 um
D =1.0mm
M =512
1.0° <0, <2.0°
6; =0.0°

From Eq. (23) Ny = N(6 = 1°) =28 and N, = N(6 = 2°) = 55. Notice that
we have to round to the nearest integer. From this information, we now
prepare a grid of 512 by 512 points with a width and height of 1.0 mm that is
zero everywhere except grid points whose radius falls between 28 and 55.

28 < R < 55

R=\\/i*+

Where i and j are grid indices which have the range —257 < i, j < 256.
Figure 7 shows the result.

The next step is to randomize the non-zero values of the amplitude
between 0 and 1, and randomize the phase between 0 and 2x. The rando-
mization step reduces the output dependence on the input beam. Effectively,
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Figure 7 A plot of the spatial frequency band that is desired in the ring diffuser
design example. The plot represents a subsection of the 512 x 512 calculation grid.

the high-frequency random function being multiplied by the desired fre-
quency envelope insures that the spectral content of the envelope function
is distributed over the full area of the binary diffuser. This removes any
input beam alignment tolerances and any input beam intensity profile
requirements. It is convenient at this point to insure that the complex grid
is conjugate-symmetric; that is

f@@)) =1*(=i,=)) (24)

Once this is done, the inverse FFT of the complex grid is calculated.
Due to the conjugate-symmetry the result is real. All of the desired spatial
frequency information is contained in the real part of the complex FFT. The
real component of the grid is used as the phase for our optic, which contains
the desired spatial frequency information. To reduce the phase to a binary
diffractive optic, the phase is truncated to only two-phase levels, 0 and 7.
Assigning any positive value to m and any negative value to 0, will do this
simply. Figure 8 shows the resulting phase profile. This simple design pro-
cess is summarized in Fig. 9.

It might be noted that the process of using only the phase or even
binary versions of the phase to reconstruct a function has a long history in
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Figure 8 A portion of the binary (two levels) phase structure for the ring diffuser.

Define desired Randomize Compute inverse FFT
spatial frequency and truncate phase
distribution

Figure 9 The steps for a simple diffuser design approach.
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Figure 10 Simulated intensity plot of the ring diffuser. This simulation used a
Gaussian input beam of diameter 0.5 mm. A spherical phase curvature was then
applied to simulate a lens with a focal length of 10.0 mm. Using scalar wave theory
the field was propagated 10.0 mm to the focal plane of the lens.

the image processing and the optical pattern recognition fields. The signifi-
cance of the phase of the image Fourier transform in reconstructing the
image is discussed by Stark (9). It has been demonstrated that the Fourier
transform phase can provide a good reconstruction of an image. This is
especially true for images with a lot of high-frequency content such as
edges. Image reconstruction from the Fourier transform phase can be
viewed as a high-frequency enhanced filtering process. This is certainly the
case of the randomized function with sharp boundaries in the example just
discussed. Flannery and Horner (10) discuss the applications of phase-only
and binary phase-only filters to Fourier optical signal processing and
pattern recognition.

This example was for a symmetric pattern. For a non-symmetric
pattern the conjugate-symmetric condition is not possible, which results in a
complex field following the inverse Fourier transform. One way to design a
more complicated pattern that can still be generated with a binary diffuser is
to define the center of the desired pattern far enough off-axis so that it does
not overlap its symmetric counterpart. One way to produce a truly non-
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symmetric pattern is to simply use the phase of the resulting inverse Fourier
transform as the phase for the diffractive diffuser.

To verify our design we first assign an arbitrary amplitude function:
Gaussian with wg = 0.25mm. We then simulate an optical Fourier trans-
form by first applying a spherical phase to the field which simulates a lens of
a given focal length and then propagating the field to the focal plane of the
lens using a scalar theory code. The result is shown in Fig. 10. Notice the
high-frequency content within the ring. This is the speckle characteristic of
diffusers. Also notice the excellent suppression outside of the ring arca. We
know that at the focal plane r = ftan(f) where r is the radius from the
optical axis, f is the focal length of the lens and 6 is the angle of the
incoming ray. From this, we can verify that the divergence angles of the
design are indeed correct.

These binary diffusers generally have an efficiency of about 70%. More
complicated techniques can be used to obtain higher efficiency (~90%) non-
symmetric patterns with multi-level or continuous phase profiles. However,
fabrication limitation may determine the level of complexity of the device.

IV. FABRICATION CONSIDERATIONS

There are many ways to transfer a designed diffractive optic into the actual
physical diffractive optic. To mention a few: binary mask(s) photolithography
followed by an etch(es) (11), gray scale mask photolithography followed by an
etch, e-beam lithography, focused ion-beam milling, plastic molding, emboss-
ing and so on. The limiting factor in the fabricating of a diffractive optic is the
level of accuracy that the process can reproduce the designed structure. This is
generally limited to the resolution of the process. This is usually defined by 6d
in Eq. (23). This is the smallest feature in the grid. In our design example, we
had a very easy resolution requirement of 6d ~ 2 pm.

There is a fabrication factor that is missing in Egs. (13)—(16), and that
is the pixelization effect in the phase. The very small squares in the phase will
manifest themselves in the far field as a large sincz(x, y) function envelope.
The desired pattern (in this case, a top hat function) will be present in the
center of the main lobe and repeated at the null points of the sincz(x, »)
function as shown in Fig. 11. The location of the null points are at
sin(6,,) = m\/éd. This problem can become very significant if desired dif-
fuse pattern contains angles that are large enough to approach these null
points. From Eq. (23) we see that this occurs when

M
~S — 2
N~ (25)
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Figure 11 An illustrative energy envelope plot of the output of a diffuser and the
effects of a pixelated phase.

In the example shown in Fig. 11, N is 50 and M is 64. It is therefore best if
N <« M /2. For a given divergence angle, decreasing 8d is a way to decrease
N. However, the fabrication method of choice may not be able to support
such a reduction in &d. Also notice that as 6d — 0 the sinc*(x,y) envelope
becomes very large and thus less of a factor. In single step lithography, such
as gray scale or direct write methods, the resolution limits actually help
minimize the sinc? (x,y) envelope effect by poorly representing the pixelated
nature of the design grid producing more of a smooth continuous phase.
This is often the phase that a coarse calculation grid is trying to approx-
imate.

In multi-step lithography processes, such as a binary multi-mask fab-
rication sequence, the small éd (sub-micron) can become difficult due to
resolution limits and layer-to-layer registration errors. These errors usually
manifest themselves as very small peaks and/or valleys in the phase creating
potentially a very large number of scattering sites.

The phase structures of two diffusers are shown in Fig. 12. In Fig. 12a
6d ~2.0pm and in Fig. 12b 6d ~ 0.33 um. Both of these diffusers where
fabricated with gray scale mask photolithography. In this case, the phase
structures have 64 phase levels and are only in a photo-resist layer on a fused
silica substrate. In the case of Fig. 12b, one can see that the final result is not
pixelated and 6d is only a consideration for the design grid. To make them
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(b)

Figure 12 Pictures of a portion of the phase structures of two diffusers with the
same desired output. Both phase functions have 64 phase levels and are in a photo-
resist layer on a fused silica substrate. (a) A pixelated version with a pixel size of
~ 2.0 pm. (b) A non-pixelated version. The alternating dark and light contour fringes
are the results of thin film interference from the illuminating source.
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Figure 13 Empirical results of a 632.8 nm laser illuminating the phase of the
diffuser pictured in Fig. 11b. This demonstrates the complexity and clarity that is
possible with complex diffusers. Note that some of the fine detail present in the actual
output was not faithfully transferred to this figure. For instance, individual hairs on
the very top of his head are distinguishable in the live presentation.

more robust, a reactive ion etch would be used to transfer the surface relief
structure into the fused silica. Shown in Fig. 13 is the experimental measure-
ment of the output of the diffuser whose phase is shown in Fig. 12b. The sinc
squared envelope indicative in a pixelated phase is not present in the output
from the phase shown in Fig. 12b since the pixel structures are not repre-
sented in the phase. This example also demonstrates that the complexity that
is available in the desired pattern is almost limitless provided that the fab-
rication method is appropriate in turning the design into reality.

Itisinteresting to note that the diffuser shown in Fig. 12b was also tested
in white light and worked fairly well. The face was clear but the letters were
blurred. From Eq. (22), the divergence angle is dependent on the wavelength of
light (X). This causes the pattern to be chromatically blurred. The separation
of colors is most evident in the letters which are the farthest points from the
optical axis. A blue-green dot at the zero order (optical axis) was present due to
the lower diffraction efficiency of the off wavelengths (11).

V. SPECKLE

The largest drawback of a diffuser is the presence of speckle in the output
pattern. Speckle is the high-frequency modulation of the intensity within the
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desired energy envelope. As alluded to earlier, the origin of speckle in the
output of a diffuser is from the overlapping nature of a coherent beam.
Speckle is simply the result of interference.

A. Size of Speckle

The average size of the speckle is of great interest since some applications
can tolerate speckle if it is small enough. From Eq. (21), we sece that the
smallest angular increment is given by (12)

A
5~ (26)

Here we are assuming that the input beam is the same size as the calculation
grid. If the phase is not periodic within the illumination area of the input
beam the D in Eq. (26) is simply the diameter of the input beam. For our
design example, 80 = 0.63 mrad. At a distance of 1 m the average speckle
size would then be ~ 0.63 mm.

At the focal plane of a lens the size of the speckle is (13)

5~ f80 ~ f % =f/#\ (27)

which is roughly the size of the focused spot if the diffuser were not present.
For an f/2 system, the average speckle size in our example is ~ 1.2 um. If
the resolution limit of the system being illuminated, such as a detector array
or a material processing application, is much greater than the speckle size,
then there will be multiple speckle lobes integrated within the resolution
area. This can significantly decrease the speckle effect by integrating the
energy over the larger area defined by the resolution limit of the system.
From Eq. (27), we see then that reducing the focused spot size of the non-
diffused system will also decrease the speckle size when the diffuser is added.
This fact also agrees with Egs. (11)~(16) since the amplitude 4(k,,z’) is
simply being convolved with the randomized orders of the diffuser. Also
notice that the frequency cut-off point is much sharper at the focus of a lens
than in a free space propagation. This is due to the fact that the amplitude
function 4 has a smaller diameter at focus. Thus we see that if the applica-
tion will allow the diffuse pattern to exist only on a particular plane along
the optical axis, the focal plane of a lens generally gives the best results.
The number of speckle lobes within the desired pattern can be seen
from Eq. (21). For a solid pattern, such as a square or a circle, the number of
speckle lobes across the diameter or along a side is simply ~ 2N. In our
example, there are ~ 55 — 28 = 27 speckle lobes across the ring’s width.
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B. Speckle Reduction

The reduction of the amount of speckle modulation is accomplished by
three basic techniques (14). The first is to illuminate the diffuser with tem-
porally or spatially partially coherent light. Since speckle is caused by coher-
ent interference, then it stands to reason that by reducing the coherence of
the beam will also reduce the contrast within the speckle pattern. Contrast is
defined as (13,14)

op
c=2L (28)
(1)
Where o7 is the variance of the intensity and (7) is the mean value of the
intensity. For coherent light the contrast is equal to unity. The contrast of
M mutually incoherent speckle patterns superimposed with the same wave-
length and equal average intensities then becomes (13,14)

C=M"? (29)

From Eq. (29), we see that a laser with many incoherent modes will have
lower contrast speckle than a single-mode coherent laser.

The second technique to reduce speckle is to time-average the speckle.
This involves physically moving the beam or the diffuser very quickly and
integrating the speckle pattern over a short period of time. This can work
quite well for applications where the sensor, such as the human eye, a CCD
array or photographic film, have a finite exposure time. The final technique
is to spatial filter the speckle by observing the pattern through a finite
aperture.

The subject of speckle is usually described in terms of the statistics of
the speckle within the pattern. The details of the statistics of the speckle
pattern is beyond the scope of this book. Excellent sources for further read-
ing on the subject are in Refs. 13 and 14.

VI. APPLICATIONS OF DIFFUSERS

The applications for diffuser beam shapers as opposed to near field beam
shapers depend on the system limitation and the application requirements.
Diffusers should be used in applications were the input beam quality and/or
system alignment capabilities are not sufficient for a near field beam shaper.
Factors that affect the input beam quality are the ability to measure the
intensity and the phase of the beam, the stability of the beam with time, and
the consistency of the beam from laser to laser. Near field beam shapers can
only shape one mode of the laser. Other modes that may be present will be
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background noise. Diffusers will shape all modes of the laser and an
increased amount of modes will lower the contrast of the speckle.

When designing a near field beam shaper for many different lasers, a
series of measurements on many lasers must to be taken to evaluate the
variance of the input beams to determine if the variance in the resulting
output is acceptable. It is prudent to design the optical system with a spatial
filter and methods to adjust the beam to better match the designed input
beam. Alignment to the beam shaper is critical. Depending on the specifics
of the beam shaper, the errors in alignment often have a multiplicative effect
on the errors observed in the output. For example, a 2% translational
misalignment in the beam shaper may result in a 10% tilt in the top hat.

Diffusers should not be used in applications where the speckle is not
acceptable and can not be reduced to a tolerable level. They are quite
effective for high-power applications where the laser that is being used has
a large number of mutually incoherent modes. They should also not be used
when collimation of the shaped pattern is a requirement.

To mention just a few specific applications, diffusers are used to homo-
genize a light source, even a broad band light source. It should be noted that
diffractive diffusers function with white light even though they are disper-
sive. They are used to illuminate a specific region for scanning applications.
They are also used in alignment applications where a specific pattern is
desired, such as laser targeting systems for firearms, machine tooling and
assembly alignment systems, and even for space station to shuttle docking
alignment. A grid diffuser pattern can be used to map the topography of a
region. They can be used with illuminators for night vision systems, product
marking systems, pen pointers with corporate logos or sports team logos,
laser light shows or increasing the viewing angle of a display. Diffusers could
even be used in a wireless, free space inter-office communication network to
reduce alignment requirements between components.
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I. INTRODUCTION

Various high-power laser applications, such as laser heat processing, cutting,
marking, photolithography, and fiber injection require a laser irradiance
that is substantially uniform on a target over a specified area at a fixed
longitudinal distance from the source. The irradiance pattern may be
circular, hexagonal, rectangular, ring-shaped, or practically any other
shape that can be defined by the boundary of an aperture. If the laser
beam mode is well defined and constant in time then the beam shaping
(field mapping) methods of Chapters 2, 3, 4, and 5 and the near-field
beam shapers discussed briefly in Chapter 6 can be used. The field mapping
approach discussed in these chapters is also applicable if the output is
required to be collimated. However, in cases where the laser modes are
unknown or change with time, and collimation is not required, a multi-
faceted or multi-aperture beam integrator may be more desirable. This
approach to beam shaping is especially suitable to excimer lasers (1,2) and
other multi-mode laser beams, laser diode arrays (3,4), or other light sources
with highly irregular irradiance distributions (5).

A multi-aperture integrator system basically consists of two compo-
nents: (a) a subaperture array component consisting of one or more lenslet
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arrays which segments the entrance pupil or cross section of the beam into
an array of beamlets and applies a phase aberration to each beamlet, and (b)
a beam integrator or focusing component which overlaps the beamlets from
each subaperture at the target plane. These clements can be refractive,
reflective, or diffractive. Generally, the subaperture elements all have the
same shape and phase function to simplify fabrication, but varying their
phase and shape within the array can provide greater irradiance uniformity
in the target plane as shown by Pepler et al. (6) and others (7). The target is
located at the focal point of the primary focusing element, where the chief
rays of each subaperture intersect. Thus, the amplitude of the irradiance
distribution on the target is a Fourier transform of the incoming wave-
front aberrated by the lenslet array (8). Although this chapter primarily
addresses the multi-aperture beam integration problem from the standpoint
of refractive optics the concepts and analysis are directly applicable to
reflective optics. Dickey and O’Neil treat multi-faceted reflective systems
in considerable detail (5).

All beam integrators can be loosely divided into two categories;
diffracting and imaging. A simple diffracting beam integrator (also called
a non-imaging integrator (9)) is illustrated in Fig. 1, consisting of a single
lenslet array and a positive primary lens. The target irradiance is the sum of
defocused diffraction spots (point spread functions) of an on-axis object
point at infinity (assuming a collimated input wavefront). If the source is
spatially coherent over the lenslet aperture, or can be defined by a single field
point from a ray optics point of view, then the diffraction spot will closely
replicate the shape of the subaperture with diffraction rings (determined by
the degree of defocus and other aberrations) superimposed. The defocus is
caused by the additional optical power of the subaperture.

T

l
f ~ F

Figure1 Diffracting multi-aperture beam integrator concept.
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The diffracting beam integrator is based on the assumption that the
output is the superposition of the diffraction fields of the beamlet apertures.
The diffraction field is obtained using the Fresnel integral. If the beam is not
spatially coherent over each beamlet aperture a more complicated integral is
required and, generally, one would not be able to obtain a reasonable replica
of the lenslet aperture. For example, a spatially incoherent field is approxi-
mated by a Lambertian source that radiates over a large angle and would
not produce a localized irradiance distribution at the output plane.

Figure 2 illustrates an imaging multi-aperture beam integrator. This
type of integrator is especially appropriate for spatially incoherent sources.
From a ray optics perspective, these sources produce a wavefront incident
over a range of field angles on the lenslet apertures. The first lenslet array
segments the beam as before and focuses the beamlets onto a second lenslet
array. That is, each lenslet in the first array is designed to confine the
incident optical radiation within the corresponding aperture in the second
array. A second lenslet array, separated from the first by a distance equal to
the focal length of the secondary lenslets, together with the primary focusing
lens forms a real image of the subapertures of the first lenslet array on the
target plane. The primary lens overlaps these subaperture images at the
target to form one integrated image of the subapertures of the first array
element. Re-imaging the lenslet apertures mitigates the diffraction effects of
the integrator in Fig. 1.

In this chapter we describe the theory and design of diffracting and
imaging multi-aperture beam integration systems. We show how the sub-
aperture shape and phase function determines the irradiance pattern in the
image plane. We discuss the diffraction effects and the interference between
the subapertures.

ﬁd’ 42 S
— | \
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Figure 2 Imaging multi-aperture beam integrator concept.
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In Sec. I we outline the basic theory and design considerations for
multi-faceted beam integrators. A number of different optical configurations
exist for multi-faceted beam integrators. Minimizing the interference effects
produced by the finite number of subapertures and making the irradiance
uniform in the target pattern is the design goal of these systems. We discuss
these problems in this section. Multi-aperture beam shaping design methods
are discussed in Sec. III. In this section we show how to use ZEMAX (10)
and other ray tracing codes to design multi-faceted beam integrators. The
effects of geometric aberrations are discussed. Fabrication considerations
are discussed in Sec. IV, and applications and experimental data are pre-
sented in Section V.

Throughout this chapter we use the following fundamental design
parameters to describe multi-aperture beam integration systems:

D = diameter of input beam at multi-aperture integrator

d = diameter of subaperture or lenslet

F = focal length of primary lens

f = focal length of array lenslet

S = diameter of target spot

A = wavelength

k=2m/A

R,, = radius of curvature of wavefront

R, = radius of curvature of reference sphere centered on target

All other parameters will be defined as they are introduced.

Il. THEORY

A major assumption in the multi-faceted approach to beam integration is
that the laser beam does not have a time-varying divergence that is signifi-
cant over the distance required to accomplish the integration; that is, only
the irradiance fluctuates with time. This divergence requirement corresponds
to a slowly varying, nearly uniform phase across each subaperture. This
condition is required to guarantee a good overlap of the beamlets in the
output plane. Further, it is required that the input beam has a high degree of
spatial coherence over each facet. If this is not the case, the diffraction
pattern of the beamlets will be dominated by the coherence function, not
the aperture function defining the beamlets.

The analysis and design of laser beam integrators should include the
effects of averaging, diffraction, interference, and imaging. With multi-
faceted integrators, it is primarily the averaging process that is used to
produce the desired irradiance distribution. Diffraction and interference
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tend to produce undesired fluctuations in the irradiance distribution.
Imaging can be used to control diffraction effects as well as the size
(scale) of the irradiance distribution. Aberrations, which are inherent in
the imaging process, tend to degrade integrator performance.

The beamlet geometry basic to multifaceted mirror integrators is illu-
strated schematically in Fig. 3. The figure does not, of course, describe the
various lens or mirror geometries required to accomplish the integration. In
the figure, the array at the left represents beamlets redirected from the laser
beam to overlap at the square on the right. The x, and y, coordinate direc-
tion cosines for the beamlets are given by

: xlm2 27 /6”: : yln2 2. (1)
\/'xlm—’—yln—i_z \/le—i_yln—i_z

The integrated optical field is the sum of the diffracted fields associated with
the individual beamlets. The diffraction integral should be developed with
respect to the limiting apertures that produce the beamlets. Also, imaging
can be included as generalized diffraction. An assumption appropriate to
multi-faceted integrators is that the optical field amplitude (or equivalently,
irradiance) is approximately uniform over each limiting aperture forming
the beamlets. Also, the angle between beamlets should be kept small to
reduce the size of the following optics and associated aberrations.

There are four major assumptions in the development of diffracting
beam integrators. We will list them here and discuss their impact. They are
as follows:

Oy =

Y1

(Xtm> Y1n) X1 ,/’/l/ X,

Figure 3 Beam integrator geometry.
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1. The input beam amplitude (or equivalently irradiance) is approxi-
mately uniform over each subaperture. This allows for the output
to be the superposition of the diffraction patterns of the beamlet
defining apertures. It is expected that small deviations will average
out in the output plane. That is, the errors associated with a
particular aperture will not dominate.

2. The phase across each subaperture is uniform. The discussion in 1.
applies in this case also. In addition, a linear phase across a sub-
aperture results in a redirection of the beamlets, causing a misa-
lignment in the output.

3. The input beam divergence does not vary significantly with time.
Generally, an input beam divergence will result in a non-overlap-
ping of the beams in the target plane. This can be corrected in
many cases with correction optics in the input beam. However, a
time-varying divergence would negate the possibility of correction.

4. The input beam field should be spatially coherent over each sub-
aperture. This is inherent in assumption 1. since the diffraction
patterns are assumed to be described by a Fresnel integral.

The imaging integrator does not require assumption 4. since it does not
necessarily require that the output pattern be described by a diffraction
integral.

A. Diffraction Considerations

The basic problem of multi-aperture beam integration is to map the input
fields in the input apertures in Fig. 3 (x;—y; plane) into the desired irradiance
in the output plane (xy—y, plane). It is assumed that the irradiance in the
input plane is relatively uniform (constant) over each aperture. This assump-
tion leads to the requirement of small apertures; however, there is a limit to
how small one would make the apertures. This is the averaging problem
discussed in Sec. II.C. Also, since the beamlets are superimposed in the
output plane, small deviations from uniformity of the beam irradiance
over the apertures should average out.

The theory of mapping a uniform input irradiance into a uniform
output irradiance is developed in Appendix A of Chapter 3. The basic
optical layout of a system for accomplishing this mapping, for each sub-
aperture, using a diffracting multi-aperture beam integrator is illustrated in
Fig. 1. The system consists of a lenslet array and a primary lens. The target
plane is located at the focal point of the primary lens. A collimated beam of
diameter D is incident on an array of lenslets, each of diameter d and focal
length £, which segments the beam into multiple beamlets. The primary lens
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of focal length F overlaps the beamlets, bringing the chief rays of each
beamlet to a common focus at the back focal point of the primary objective
where the integrated irradiance pattern is formed. The primary lens pro-
duces a field distribution at the focal plane that is proportional to the
Fourier transform of the product of the functions representing the input
beam and the lenslet array (8).

It is shown in Chapter 3, Appendix A using the method of stationary
phase that the optical element that effects the mapping is a quadratic phase
element, that is, a simple lens. The analysis is done in one dimension, but it
can be extended to two dimensions. The phase of the optical element is
given by

() -)

The stationary phase solution includes a parameter 3 that is a measure of
the quality of the solution. This parameter, given by

mdS

has the same form as the Fresnel number, differing only by a constant
factor. Note that [ is a dimensionless constant. The significance of 3 is
discussed in considerable detail in Chapters 2 and 3. In Chapters 2 and 3,
(B is shown to be related to the mathematical uncertainty principle. Although
the numerical coefficient in front of the factor, dS/\F, may vary with the
problem, the main result is that control of the shape of the beam can not be
maintained if 3 is sufficiently small. Further, it can be seen from the form of
Eq. (2) that if 3 is fixed the solution for the phase of the lenslet is fixed.

It can be shown, using diffraction theory (see Chapter 3, Sec. II.E),
that if the phase function representing each lenslet is an even function then
the negative of the phase also gives the same output irradiance. If the lens-
lets in the array are positive, as shown in Fig. 1, each beamlet will have a
focus ahead of the focal point of the primary lens. If they are negative, the
individual beamlets will either have a real focus after the focal point of the
primary lens or a virtual focus ahead of the lenslets, depending on the
relative optical powers of the lenslets and the primary lens. The numerical
aperture of the beamlets and the distance between beamlet foci and target
plane determines the spot size, S. It can be shown from paraxial geometrical
optics that the spot size S on the target is equal to the focal length F of the
primary lens divided by the f~number of the subaperture lens,

F

S:f—/d.

4)
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This result is also obtained using diffraction theory and Fourier optics. It
is apparent from Eq. (4) that the lenslet diameter can be varied over the
array as long as its focal length is also varied proportionately such that
the f-number ( f/d) remains constant. Also, one can change the focal length
F of the primary lens to scale the diameter S of the target spot and not
change (.

The diffraction pattern of a single subaperture determines the shape of
the spot on the target. The Fresnel number is useful for estimating this
irradiance distribution on the target. The Fresnel number equals the number
of half waves of optical path difference (OPD) and is approximately given
by

Pl
Fresnel =2 x OPD = 5 <Rw RO>, (5)
where R,, is the radius of curvature of the wavefront, R, is the radius of
curvature of a reference sphere centered on the observation point, and r is
the radial coordinate in the subaperture. For a uniformly illuminated aper-
ture the Fresnel number also equals the number of peaks in the aberrated
point spread function (PSF) cross-section. Even integer Fresnel numbers
have an on-axis minimum in the diffraction PSF. Odd integer Fresnel num-
bers have an on-axis peak intensity in the PSF. This is shown in Fig. 4(a)
and (b). Generally, the Fresnel number is a measure of the complexity of the
diffraction pattern; the number of maxima increases with increasing Fresnel
number while the depth of the modulation decreases with increasing Fresnel
number.

Assuming a collimated beam incident onto the lenslet array, the
optical powers of the lenslets and the primary lens combine to produce
a spherical wavefront converging with a radius of curvature of R,.
Substituting 1/R,, = 1/f + 1/F, 1/R, =1/F, and d = 2r into Eq. (5) gives
the Fresnel number in terms of lenslet parameters,

d
Fresnel = ———. 6
resnel = 7+ 77D (6)
Alternatively, substituting Eq. (4) into Eq. (6), the Fresnel number can be
written in terms of the target spot size and primary lens focal length,

Fresnel = —. 7
resnel = (7
Since AF/d is proportional to the width of the point spread function of a
single subaperture, Eq. (7) shows the Fresnel number is proportional to the
number of PSFs across the target pattern. The lower the Fresnel number,
the more rounded the target pattern becomes.
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Figure 4 (a) Diffraction patterns of on-axis subaperture pupil functions as a func-
tion of Fresnel number 2 waves defocus and (b) 2.5 waves defocus.
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B. Interference Effects

The output irradiance in Fig. 3 is the superposition of the diffraction pat-
terns of the input aperture fields. Depending on the degree of coherence of
the source, the output irradiance will contain a component of an interfer-
ence or speckle pattern. For these conditions, the integrated irradiance of
the coherent component is adequately described by

2
y) = ZAmn exp{i[k(amx + 6}1)’) + amn]} |F(x7y)|2 (8)

where «,,, and 3, are the direction cosines defined in Eq. (1), 6,,, is the phase
of the beamlet, 4,,, is the amplitude of the beamlet field, and the function
F(x,y) is the diffraction integral of the beamlet-limiting aperture. F(x,y) is
the Fourier transform of the aperture function for the optical configuration
in Fig. 1.

The first factor in Eq. (8) describes the averaging and interference
effects of the integrator. The interference effect is a result of the sum of
linear (in x and y) phase terms, which can be viewed as a Fourier series.
The spatial period of the resulting interference pattern is given by

A

p=2 ©)
where « is the angle between adjacent beamlets.

For a spatially coherent source the interference pattern will generally
result in large fluctuations in the integrated irradiance. The only practical
way to negate the effects of interference is to choose a sufficiently large value
for « so that the interference pattern is too fine to be resolved in the appli-
cation. If this is done, the effective integrated irradiance will be the local
average of the irradiance in Eq. (8). It is easy to show that the averaged
irradiance is

M ,N

| A | F (5, ). (10)
0,0

)

This result represents the ideal performance of a multi-faceted beam inte-
grator. Note that this result does not depend on 6,,,, the relative phase of the
beamlets. The effects of the diffraction term are discussed with respect to
specific configurations in the following sections.

The above results can be obtained for the system in Fig. 1 using
Fourier transform theory. Since the target is located at the focus of the
primary lens, the irradiance pattern on the target is simply the magnitude
squared of the Fourier transform of the pupil function modified by the
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lenslet array (assuming a spatially coherent source). If all the lenslets are
identical, the aberrated pupil function is approximately the convolution of a
two-dimensional delta function array (array of lenslet centers) and the lens-
let pupil function, all multiplied by the laser beam amplitude profile. The
Fourier transform is then the product of the Fourier transform of the delta
function array (properly scaled) and the aberrated PSF of the subaperture,
convolved with the PSF of the laser beam focused by the primary lens.
Mathematically, the field just past the lenslet array is given by

E:Eb(x’y)[qj(xay)*Aé‘é(xvy)}a (11)

where Ej(x,y) is the field of the laser beam, ¥(x,y) is the lenslet pupil
function, Ags(x,y) is the delta function array, and * denotes convolution.
The irradiance at the target plane is proportional to the magnitude squared
of the Fourier transform of E,

I o |S[E]P= |By + {0(x,0) Ags (x, )}, (12)

where the tilde denotes the Fourier transform operation. Since the Fourier
transform of a periodic two-dimensional delta function array is a two-
dimensional delta function array, the function, /],55(x, ¥), is the source of
the interference effects (11). The subaperture PSF, ¥(x,y) represents the
diffraction effects. These diffraction and interference effects produce unde-
sirable fluctuations in the irradiance distribution.

For a rectangular aperture array, the spatial period of the interference
pattern is given by the ratio of the wavelength to the sine of the angle
between adjacent beamlets:

. A
Perlod—m. (13)

Since sinf approximately equals the lenslet spacing divided by the focal
length of the primary lens, the interference periodicity is also given by

Period = AFF . (14)

Equation (13) and (14) are obtainable from Ag(x,y) scaled to the focal
plane of the primary lens.

C. Averaging

The averaging aspect of multi-aperture beam integrating systems consists of
making tradeoffs between lenslet aperture size and ( or, equivalently, the
Fresnel number. Increasing the lenslet aperture size, d, increases § which

Copyright © 2000 Marcel Dekker, Inc.



reduces diffraction effects. However, averaging is reduced. What is desired is
to have d as small as possible while maintaining adequate .

Assuming the intensity distribution within each subaperture is rela-
tively uniform, the superposition of all the subapertures on the target plane
will give a relatively uniform irradiance distribution (except for diffraction
and interference effects). The assumption of uniform intensity within a sub-
aperture is of course more valid the smaller the diameter of the subaperture.
However, holding the f/d constant in order to maintain a spot size in
accordance with Eq. (4), Eq. (6) shows the Fresnel number decreases linearly
with subaperture diameter, which results in fewer peaks in the diffraction
pattern with a correspondingly greater depth of modulation and a more
gradual roll-off on the edges of the pattern at the target. This may require
expanding the input beam in order to make the subaperture diameters larger
or reducing the focal length of the primary lens. Varying the lenslet diameter
according to Eq. (6) across the lenslet array can also be used to superimpose
different diffraction patterns such that the peaks of one pattern fall into the
valleys of another. Varying the subaperture diameters by integer multiples
allows 100% fill factor to be maintained. This is the approach taken by
Pepler, et al. (6).

D. Coherence Effects

As discussed in Sec. II.B, multi-aperture beam integration systems will gen-
erally exhibit a degree of interference or speckle. The amount of speckle is
determined by the spatial coherence of the source. A spatially incoherent
source will not produce an interference/speckle pattern and a spatially
coherent source will produce the maximum interference/speckle. The results
for intermediate cases will depend on the spatial coherence function repre-
senting the source. A general formulation of the problem in terms of coher-
ence theory is quite involved and beyond the scope of this chapter. However,
we will give a simplified formulation that will illustrate the major aspects of
the problem.

The multi-aperture beam integrator can be viewed as a multi-beam
interferometer since all of the beamlets are superimposed at the target plane.
The superposition of any two of the beamlets mimics Young’s experiment.
The visibility of fringes in Young’s experiment is the definition of spatial
coherence. In the following, we will give only the rudiments of coherence
theory needed to develop the simplified model of beam integration systems.
For the basics of coherence theory the authors recommend the book,
Statistical Optics, by J. W. Goodman (12).
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Assuming a quasimonochromatic source, a generally good assumption
for lasers, the spatial coherence of a laser is adequately described by the
mutual intensity

Jio = (u(Py, u*(Pa, 1)), (15)

where u( Py, t) is the analytic signal describing the optical field, P; and P, are
points in the plane in which the coherence of the beam are being repre-
sented, and (- -) denotes a time average. The mutual intensity is a correlation
function when the functional dependence is an explicit function of the dif-
ference in coordinates, that is, Jy,(P;, P,) = Ji5(P, — P;). Note that by
definition the irradiance (frequently called intensity) of the optical field is
obtained for P, = P, as

I(Py) = Jio(Py, Py). (16)
The complex coherence factor is defined as the normalized mutual intensity,

Jio(Py, Py)

MZ(PI’PZ):W'

(17)

When one produces an interference pattern by combining radiation from
points P; and P, in a Young’s interferometer configuration, J;, may be
regarded as the phasor amplitude of the spatial sinusoidal fringe pattern
(on axis), whereas (i, is the normalized fringe pattern. The complex coher-
ence factor has the property,

0<|pp| <L (18)

When pq, = 0 there are no interference fringes, and the two optical fields are
mutually incoherent. When 1, = 1 the two optical fields are perfectly cor-
related, and the two fields are mutually coherent. For intermediate values of
11> the fields are partially coherent.

The mutual intensity J;, can be computed at an output plane given J;,
in the input plane using a generalized Van Cittert—Zernike theorem (12) and
the relation

Ji(P1, Py) = t(P)1*(Py)Ji(Py, Pa). (19)

Equation (19) relates the mutual intensity transmitted by the object with
transmission t to incident mutual intensity. In Eq. (19) the numerical sub-
scripts have been dropped and replaced by i and ¢, which represent the
incident and transmitted mutual intensity respectively. The generalized
Van Cittert—Zernike theorem is a fourth-order integral over four variables.
To develop such an integral for the system of Fig. 1 would be very difficult
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and may not be very enlightening. For this reason we will make a simplify-
ing assumption that will illustrate the basic concepts. The basic assumption
that we will use is that the field is mutually coherent over each subaperture
in Fig 1, and will generally be partially coherent over greater distances. The
assumption that the field is mutually coherent over each subaperture is
fundamental to the performance of diffracting multi-aperture beam integra-
tion systems (see Sec. II). This assumption can be reduced for the case of
imaging integrators. The following analysis will apply specifically to diffract-
ing beam integrators.

With this assumption, we can approximate the field at the output
plane as the sum of the coherent diffraction from each aperture,

M,N

Z mn CXP{ amx + ﬂny) + 0,11,1}}]F(X,y). (20)
0,0

The functions and variables in Eq. (20) are defined following Eq. (8).
Assuming a degree of partial coherence between the beamlets, the
coherence aspects of the problem are contained in the correlation between
the amplitudes, 4,,,. Given this, we can write the intensity at the target plane
as

< Z mn eXp{ aﬂ’l'x + ﬂny) + 0}717[] }]F(x7 y)

0,0
MN

X ra eXpl—ilk(ayx + Byy) + 0,4} F*(x, ) > (21)
0,0

Noting that the time average only involves the amplitudes, the time average
can be written as

M,N

166,9) = 3 A PIF (e, 0P

0,0

+ Z KAmnqu> exp{i[k([am - ap]x + [ﬂn - 5{1])})

mn#p,q

+ emn - epq]}HF(xay)lz' (22)

Noting the time average bracket can be interpreted as a mutual intensity, we
can write the last equation as
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M,N

[ Al |F (x, )
0,0

+ Z:Ummmmﬂﬂhm—%h+V%—@h)

mn#p,q
+ 9mn - pq]}HF(x J/)| (23)

Using Eq. (17), the last equation can be written in terms of the complex
coherence factor as

MN
2 2
= Z |Amn| |F(X7y)|

+ Z \/ Imnlpq Homn.pq CXp{ ([ - ap}x =+ [ﬂn - ﬂq]y)

mn#p.q
+ emn - 0pq]}]|F(x7y)|2' (24)

The reader should note that the subscripts refer to aperture elements in the
lenslet array and the intensities, /,,,, are assumed constant over each aper-
ture. With this in mind, the reader can see that the second term in Eq. (24) is
responsible for the interference (speckle) effects, and the first term is the sum
of the irradiances at the output associated with each aperture. Clearly, if the
fields in each aperture are mutually incoherent, f,,, ,, = 0, we have

M,N
2 2
=3 A PIE )P, (25)
0,0

which is just Eq. (10). When all of the aperture fields are mutually coherent,
My pg = 1, we have maximum interference, and the exact form is dominated
by the 7,,, and 6,,,. In all other cases the interference pattern will be influ-
enced by the correlation between the various aperture fields, fi,,, 4, as well
as I,,, and 6,,,. In all cases, the envelope of the irradiance pattern is given by
the function, |F(x,y)[*.

To estimate the effect of the coherence of the input laser beam on the
interference pattern in the output using Eq. (24) one needs to estimate the
complex coherence factor. The complex coherence factor can be measured
by repeating Young’s experiment for pinhole pairs with different spacings
between the holes. This is generally a tedious process. It is not uncommon,
in practice, to design a prototype beam integration system for a given laser
and experimentally measure its performance as part of the of the engineering
design process. Experimental evaluation of the effects of spatial coherence is
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presented in Sec. V.A. This section presents experimental data for spatially
coherent (between subapertures) beams, partially coherent beams, and
spatially incoherent beams.

E. Imaging Integrators

Diffracting integrators (illustrated in Fig. 1) are restricted to sources with a
relatively high degree of spatial coherence over each subaperture. In addi-
tion, a change in the angle of incidence of the incoming light on the array
causes a lateral shift in the irradiance spot on the target. As spatial coher-
ence decreases or the angular spread, or field angle of the incident light
increases, the irradiance blurs to a spot larger than that given by Eq. (4).
This problem is eliminated with an imaging integrator, illustrated in Fig. 2.
The angular spread or field angle of the incident light can be quite large and
still maintain overlap of the beamlets on the target plane. The imaging
integrator can also offer improved integrator performance when the beam
is collimated with a high degree of spatial coherence by reducing the diffrac-
tion effects. This effect is discussed in detail for reflective systems in
Reference 5.

An imaging integrator requires two lenslet arrays. The first lenslet
array segments the input beam into multiple beamlets and directs these
onto the second lenslet array. The first lenslet array serves to produce an
intermediate image plane on or near the second lenslet array so that the
second lenslet array can reimage the subapertures of the first array onto the
target plane. The magnification of the subaperture images is given by the
ratio of the focal lengths of the primary integrator lens and of the second
lenslet array. Thus, the spot size is again given by Eq. (4) with the slight
modification that the second array lenslet focal length and first array lenslet
diameter are used.

F
S=hd,

The second lenslet array serves as a field lens to redirect the off-axis
chief rays back toward the optical axis. If the distance between the two
lenslet arrays equals the focal length of the first array, then the integrator
can receive incident light over a maximum field angle equal to the second
array subaperture semidiameter divided by the focal length of the first array.

d
0=—=.

2fi
The simplest form of the second lenslet array element incorporates
identical lenslets with mutually parallel optical axes. This is not a necessary

(26)

(27)
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requirement, for example, if a continuously variable tilt or decenter is
applied to each of the lenslets as a function of position in the array, the
system can be made into a zoom integrator with a continuously adjustable
spot size. Zoom integrators are discussed further in Sec. III.B and several
configurations are reported in Reference 5.

lll. DESIGN CONSIDERATIONS

The first step in the design process is to decide between building a diffracting
or imaging beam integrator, and whether to use refractive, reflective, or
diffractive components. Generally, an imaging beam integrator will produce
lower diffraction effects and better homogenization, particularly for sources
with low spatial coherence. A diffracting integrator allows greater flexibility
in shaping the irradiance spot through aberrations and aperture flipping (see
Sec. II1.C). Imaging integrators generally introduce more complexity since
there are more optical elements and associated alignment issues. Equation
(4) is used to determine the first-order parameters of the lens elements of a
diffracting integrator. The first-order parameters for imaging integrators are
obtained using Egs. (26) and (27).

Equation (3) or (7) is used to insure that the parameters in a first-order
design result in § or Fresnel number values required for a good beam
shaping result. Depending on requirements the Fresnel number should be
at least 3.0 and the beta parameter should be at least 40. The period of the
interference pattern is obtained using Eq. (14). Generally, it is desirable for
the period of the interference to be small to reduce the interference effects.
Source spatial incoherence also reduces the contrast of the interference
pattern. Various software programs, either geometrical ray tracing or
wave propagation, can be used to evaluate and optimize the lens aberrations
to achieve the desired integration and smoothing.

A. Diffracting Integrator Layout

The optical layout of a basic multi-aperture beam integrator is shown in Fig.
5. For clarity, only the rays for two outer lenslets are drawn. A collimated
beam from a laser source is incident from the left. A lenslet array breaks up
the incoming beam into an array of beamlets which are then overlapped at
the target by a primary integrator lens. Either positive lenslets or negative
lenslets (or a combination of the two) may be used in the array. Positive
lenslets will produce a real beamlet focus ahead of the target plane (as
shown in the figure). Negative lenslets will have a virtual beamlet focus
either ahead of the lenslet array or behind the target plane, depending on
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Figure 5 Optical layout of a refractive diffracting beam integrator.

the relative optical powers of the lenslets and primary lens. In the simplest
configuration, all the lenslets are identical. Note, the spacing between the
lenslet array and the primary integrator lens is not critical to first order.

The target plane is located at the focal point of the primary lens. The
positive primary lens focuses the chief rays of each beamlet to a common
point on the target, thus overlapping the defocused beamlets at the target. If
the lenses are sufficiently free of aberrations then the spot formed at the
focal point of the primary will replicate the lenslet aperture. Square lenslet
apertures will form a square irradiance pattern, and circular lenslet aper-
tures will form a circular irradiance pattern. If the lenslet has positive optical
power, the spot will be an inverted replica of the aperture. If it has negative
optical power, the spot will be an upright replica of the aperture. This is the
basis for the aperture flipping technique discussed in Sec. II1.C. As shown in
section Sec. III.D, aberrations can be added to the lenslets to significantly
distort the irradiance pattern into almost any arbitrary shape.

B. Imaging Integrator Layout

Imaging integrators are well suited to sources with a low degree of spatial
coherence (13). Their drawback is the loss of flexibility in irradiance pattern
shaping through lenslet aberrations. Figure 6 shows an optical layout for a
simple imaging integrator with an extended source. For clarity, only the rays
for two outer lenslets are drawn. The first lenslet array segments the input
into multiple beamlets and focuses the beamlets onto the corresponding

—_— — p———
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Figure 6 Optical layout of a refractive imaging integrator.
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lenslets of the second array. To minimize stray light outside the target area,
the beamlet diameters must not be greater than the lenslet clear apertures at
the second array. Minimum spot size on the second array elements occurs
when the array separation distance equals the first array lenslet focal length,
in which case Eq. (27) applies. Each element of the second lenslet array
combined with the primary lens forms a two-lens telescope that produces
a real image of the pupils (of the first array lenslets) at the target plane. The
geometry of each telescope is such that the pupil images are superimposed at
the output plane.

To make a zoom imaging integrator that allows continuous adjust-
ment of the target spot diameter, one simply needs to add a second inte-
grator lens to the system, either ahead of or behind the primary integrator
lens. The first or primary integrating lens forms a virtual image of the
integrated irradiance pattern at a finite conjugate distance. The secondary
integrator lens reimages the virtual image onto the target plane with a
magnification equal to the ratio of the conjugate distances.

Alternatively, one can add to each lenslet in the second array a tilt that
is proportional to the lenslet’s radial distance from the system optical axis.
This is equivalent to superimposing the primary integrator lens onto the
lenslet array and thus eliminating one element. Figure 7 shows such a
zoom imaging integrator.

C. Subaperture Shape

The fact that the spot has the same shape as the subaperture allows almost
any spot shape to be produced. Usually, the designer wishes to stack the
lenslets with 100% fill factor in order to maximize the energy on the image

— H
—

Figure 7 Zoom imaging integrator for variable spot size.
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plane. Lenslet aperture shapes which are easily stacked with 100% fill
factor include square, rectangular, and hexagonal. If a diffracting
integrator is used, one can form a triangular irradiance pattern with
100% fill factor at the lenslet array. If a triangular subdivision of a square,
rectangle, or hexagon results in only two different triangles which are
inverted images of each other, then the sign of the phase function can be
flipped for inverted apertures resulting in a single integrated image of one of
the triangles.

An optical layout of an aperture-flipped diffracting integrator is illu-
strated in Fig. 8. As shown in Fig. 9, the lenslet apertures are equilateral
triangles in a hexagonal packing. Triangles oriented with apex up have
positive optical powers. Triangles with apex down have negative optical
powers but of the same magnitude. The positive apex-up apertures become
inverted at the target but the negative apex-down are not. Their superposi-
tion results in a single apex-down triangular irradiance pattern. Hgure 10
illustates triangular apertures in a rectangular packing.

Aperture flipping is practical only with diffracting integrators. To use
aperture flipping with imaging integrators would require at least a third
lenslet array, adding greatly to system complexity. In order to incorporate
aperture flipping and maintain 100% fill factor at the lenslet array,
the subdivision of the basic square, rectangle, or hexagon shape must result
in two subapertures which are inverted images of each other. The phase
functions in these two apertures have the same magnitudes but opposite
signs.

Figure 8 Diffracting integrator incorporating aperture flipping.
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Figure 9 Triangular apertures in a hexagonal packing with sign-flipped optical
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Figure 10 Triangular apertures in a rectangular packing with sign-flipped optical
powers.
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D. Lens Phase Functions and Aberrations

Once the first-order layout and aperture shape are determined, aberrations
in the lens elements can be adjusted to fine-tune the irradiance distribution
on the target. Aberrations in both the lenslet array and the primary inte-
grator lens affect the irradiance uniformity on the target. Aberrations in the
primary lens (e.g. spherical aberration) will result in a lateral displacement
between the overlapped beamlet diffraction patterns at the target which will
tend to compensate for the diffraction-induced irradiance modulation.
Equivalently, a slight defocus of the target from the ideal focal point pro-
duces a similar effect, as shown by Deng et al. (14).

The phase function of the lenslet array elements affects the diffraction
pattern or image of the lenslet apertures. For diffracting integrators, non-
quadratic lenslet phase functions can be used to significantly modify the
shape of the irradiance pattern. This is particularly useful in laser machining
where one desires to shape the laser irradiance to the clear aperture of a
fabrication mask in order to increase the laser power through the mask (15).
For example, a phase function which is a linear function of radius, ¢ = ar,
where r is the radial coordinate in each subaperture, will produce a ring
pattern. This is illustrated in Fig. 11. Horizontal and vertical rectangular
subapertures with decentered lens functions can be used to form hollow
square patterns. Rooftop prisms can be superimposed onto the lenslets,
giving a linear phase tilt in one axis, to produce two parallel bars in the
irradiance pattern (16). Alternatively, lenslets can be decentered to produce
multiple spots on the target (17).

Figure 12 illustrates three different lenslet surface profiles and their
corresponding irradiance patterns on the target (determined by ray tracing).

| _———

Figure 11 Diffracting integrator forming a ring pattern on target.
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Figure 12 Lenslet surface profiles (represented as gray scale levels) and resulting
irradiance patterns; hollow square, thick hollow square, and hollow trapezoid.

The surface profiles, represented as gray scale patterns, are similar to first
order but differ in the higher-order (aberration) terms. Variation of the
aberrations within the same basic lenslet profile allows producing a thin
hollow square, thick hollow square, or hollow trapezoid irradiance patterns.
The square aperture of each lenslet has been subdivided into four square
subapertures to form the four sides of the patterns. A lenslet with only tilt
but no optical power will produce a decentered point on the target. Optical
power in one direction in the lenslet aperture will spread the point in the
same direction on the target. The hollow patterns are easily made with
cylindrical lenlets with a tilt or decenter term superimposed. Thick hollow
patterns are made with a small anamorphic term or optical power in the
orthogonal direction.
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IV. FABRICATION CONSIDERATIONS

The key element in multi-aperture beam integrators and most difficult ele-
ment to fabricate is the lenslet array. This element can be refractive, reflec-
tive, diffractive—transmissive, or diffractive-reflective. Metallic reflective
anamorphic or non-rotationally symmetric elements can be diamond turned
(18) Various methods of fabricating microlenses are discussed in detail in the
literature (19,20), so we will only briefly outline two of the more common
technologies for fabricating these elements. Photolithographic technology
can be used to fabricate any of the above types of lenslet arrays.
Photoresist of appropriate thickness is spun on the glass wafer and hardened
by baking. The lens surface profile is formed in the photoresist by exposure
to UV light through chrome or gray scale masks and then development of
the photoresist. The lens surface profile is then transferred into the glass by
reactive ion etching or ion milling.

Inherent limitations of this fabrication technology vary from vendor to
vendor, but generally include wafer size limitations, wafer material limita-
tions, maximum etch depth limitations, minimum feature size limitations,
etch uniformity across the wafer, and lens surface profile accuracy.
Acceptable wafer thickness typically ranges from about 300 microns to
several millimeters. The maximum wafer diameter that can be easily pro-
cessed is about 150 mm. Almost any material can be ion milled but only a
few materials can be reactively ion etched. The common material choices for
reactive ion etching include fused silica, silicon, and ZnSe. A few other more
exotic materials can also be etched with reactive ions, but costly process
development is often required with these materials.

Etch selectivity (ratio of wafer etch rate to photoresist etch rate) can be
varied over a limited range with reactive ion etching by changing the etchant
gas mixture. Selectivity for the ion milling process is usually limited to a
ratio of about one. Limits on selectivity and maximum workable photoresist
thickness places a limit on the maximum etch depth or lens surface sag. The
increase in surface roughness with increasing etch depth also limits max-
imum etch depth. The maximum etch depth for fused silica is about 20 um.
Silicon, because of its higher etch rate can be etched much deeper, to 60 um
or more. The above numbers are loose approximations and vary from
vendor to vendor, but they provide the reader a general idea of the types
of fabrication limitations involved.

Photoresist heating and reflow is a common inexpensive method of
fabricating microlenses. A single binary chrome mask is used to produce
pillars of photoresist which are subsequently reflowed into a lenslet surface
by heating. The profile is then etched into the glass wafer by reactive ion
etching or ion milling. A few drawbacks of this method are noted here. First,

Copyright © 2000 Marcel Dekker, Inc.



it is difficult to get 100% fill factor (ratio of lens surface area to wafer surface
area) with this method. A sufficiently large gap must exist between adjacent
lenses to prevent the merging of photoresist from separate lenses. Second,
the reflow method cannot produce negative lens elements. Third, the lens
elements tend to have focal lengths which are too short for beam integrators.

The alternative gray scale mask fabrication method solves the above
problems as can be seen in Fig. 13. The drawback of gray scale mask
technology is greater process development and cost. The inherent nonlinea-
rities of this process often require iterative corrections to the gray scale mask
to accurately produce the desired lenslet surface profile.

Reliable surface profilometry equipment, whether contact or optical, is
essential for fabricating microlenses. Contact surface profilometers which do
not raster scan the lenslet profile, but rather make only a single scan (cross
section) of the lens, can be difficult to use as the stylus must scan through the
vertex of the lens in order to obtain an accurate measurement of the surface
profile. Optical profilometers, such as interferometric microscopes, can cap-
ture the entire three-dimensional surface profile of the lens. However, opti-
cal profilometers designed to measure flat surfaces can introduce erroneous
spherical aberration into the measurements when measuring the steep
surface curvatures of microlenses. A Fizeau interferometer can give better

9 JAM 98
0.8 kY 18pm AVE X ROOOG"

Figure 13 Array of positive and negative elements fabricated by gray scale mask
technology.
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results for surface profiles which are close to spherical. A ball lens or metal
microsphere can be used to check a particular instrument to determine if it
introduces erroneous aberrations into the measurements.

V. APPLICATIONS AND EXPERIMENTAL EVALUATION

Numerous applications exist for multi-aperture beam integrators. A few of
these applications include; laser heat processing (including medical and
dental applications), laser machining, product marking, laser diode array
integration for laser pumping and fiber injection, photolithographic mask
aligners and steppers, and fiber injection systems. We show experimental
results of a fiber injection application below.

The light sources of photolithographic steppers and contact mask
aligners are typically high-pressure mercury or xenon arc lamps which sup-
ply the required high-intensity UV irradiance. The energy produced by these
highly compact and relatively noisy arc sources must be uniformly distrib-
uted over the area of the photolithographic mask. A highly uniform irra-
diance at the mask plane is particularly critical for gray scale mask
processes. Multi-aperture beam integrators have been successfully used on
photolithographic equipment to homogenize arc sources for many years.
Examples of such beam integrators are described in patents by T. Mori
(21) and H. Komatsuda (22).

Arc sources can be modeled as a series of small concentric ellipsoids,
located near the cathode tip, whose radiance decreases with increasing size
of the ellipsoids. Most of the radiant power originates from an ellipsoidal
region less than 1 mm in diameter near the cathode tip. Although these
sources are often referred to as “point sources,” their finite size still results
in a finite angular distribution of intensity in the collimated beam. Thus, arc
sources are only partially spatially coherent. Nonsequential ray tracing can
be used to determine the intensity distribution of collimated arc sources for
a given collimator system. Due to the limited spatial coherence of arc
sources, imaging beam integrators are ideally suited for forming uniform
irradiance patterns with these sources. The Van Cittert—Zernike theorem
can be used to model the spatial coherence of collimated arc sources.

A related but slightly different application of beam integrators is the
combining of the multiple emitters of laser diode arrays to form a single
irradiance pattern. For example, a laser printer application might require
the magnified line images of each emitter to be superimposed on the target.
Instead of segmenting a collimated source input, the lenslet array reimages
multiple sources at finite conjugates. An integrator lens overlaps the images
at the target.
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A. Experimental Evaluation of Diffracting Beam
Integrator

The theory and effectiveness of the design approach discussed in this chapter
for the diffracting or non-imaging beam integrator can be illustrated using
experimental data recently collected on a compact fiber injection system
(23). For this application a single lenslet array and a plano-convex lens
were employed as the fiber injection elements to couple a multimode, Q-
switched, laser to the fiber optic transmission system. Characterization of
the intensity profiles produced by the diffracting beam integrator using
various laser sources and primary lens focal lengths illustrate those diffrac-
tion, interference, and averaging effects discussed in Sec. II.

The optical components and their specifications that form the basis of
the fiber injection system are shown in Fig. 14. This system comprises a
multi-aperture, refractive, lenslet element fabricated by MEMS Optical
Inc. and a primary injection lens that overlaps or integrates the beamlets
from each subaperture at the lens focal plane. Given the set of specifications
shown in Fig. 14 and the design equations presented earlier in this chapter
the functional injection parameters are calculated and summarized for the
reader in Table 1.

D
Input Source Primary Injection Lens
Wavelength: 1061nm Type: Plano/Convex
Diameter (D): 5.0mm Material: Fused Silica
Divergence: 2mR (Full Angle) Focal Length (F): 17.1mm
Lenslet Array Integrator Output
Fill Factor: >98% (Hexagonal) Spot Size (S): 0.310mm
Subaperture (d): 1.25mm Fiber Size (Core): 0.365mm
Focal Length (f): 68.95mm Fiber NA: 0.22

Figure 14 Optical architecture and design specifications for the diffracting beam
integrator and fiber injection system.
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Table 1 Calculated injection parameters for the diffracting beam

integrator

Equation Calculated value Measured value
wdS

=—— Eq. (3 67 NA

=+ Ea 0

S = F Eq. (4) 310 um 353 um
fld

Fresnel = ds Eq. (7) 5.34 Modeled

“ort '
Period = /\71:, Eq. (14) 14.3 16.3 um

Verification of the design equations and illustration of the lenslet’s
performance is based on capturing and characterizing intensity profiles dis-
tributed along the optical axis of the primary injection lens. The collection
of these intensity images was accomplished using a CCD camera* config-
ured with a suitable objective lens to achieve an approximate 10x magnifi-
cation. Post processing and manipulation of the image data was performed
using analysis software.t With this analysis package a qualitative compar-
ison of the peak intensity value can be made for the various profiles pre-
sented in the sections that follow. This figure of merit, referred to as the
peak-to-average (P/A) value, is defined as the ratio of the peak pixel inten-
sity count to the average pixel intensity count within a user defined diameter.
Subsequently, qualitative comparisons of intensity profiles are made by
maintaining a consistent user defined diameter for all cases in which the
peak and average pixel counts are calculated. (All P/A values presented
herein are based on a 365um diameter positioned at the centroid of the
imaged intensity profile.) With this definition a perfect flat top intensity
profile extending over the entire 365 pm diameter would have a P/A value
of unity — the theoretical ideal for most fiber injection applications.

1. Diffraction and Interference Effects

The theory of the effects of laser coherence on the performance of the
diffracting beam integrators discussed in Sec. II can be illustrated by

*COHU 4800 Camera active picture pixel size — Horizontal: 23.0 pm, Vertical: 27.0 pm.
+Beamcode is an optical beam diagnostic system providing real time analysis of captured
intensity profiles.
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observing the intensity distribution located at the focal plane of the primary
injection lens when such a system is illuminated by a variety of laser sources
— representing varying degrees of spatial coherence. As described in
Sec. II.A, the diffraction pattern of a single aperture of the lenslet array
determines the shape of the spot on the target and the Fresnel number (or ()
yields a general measure of the diffraction structure or deviation from the
geometric ideal (i.e. flat top profile). In addition, it was shown that both
diffraction and interference effects play an integral role in determining the
ultimate intensity distribution. For example, a source that is characterized
as “highly spatially coherent” produces an intensity pattern dominated by
interference effects characterized by large intensity fluctuations (or spikes)
with a well-defined periodicity at the lens focal plane — while sources having
a “lesser degree” of spatial coherence exhibit a mixture of both interference
and diffraction effects.

Three different laser sources were used to “‘separate” and better illus-
trate the effects of diffraction and interference on the ultimate performance
of the diffracting beam integrator described in Fig. 14 and Table 1.
Although each laser source that we evaluated presents a different spatial
intensity pattern at the input to the lenslet element, it is the spatial coherence
of the source that appears to dominate the resulting profiles at the injection
lens focal plane (23).

Using a multimode, Q-switched, Nd:YAG laser (Laser Photonics
Model YQL-102), diffraction effects are clearly distinguishable in the
intensity profiles shown in Fig. 15a. Visible in the intensity profiles are
the shape of the lenslet elements (hexagonal) and the expected diffraction
pattern. With this laser source lenslet diffraction dominates the intensity
structure and the effects of the Fresnel number can be experimentally
observed and analytically verified. Overlaying the calculated one-dimen-
sional diffraction profile with the experimental results displayed in Fig.
15b, reveals excellent agreement with the measured data. This suggests
that the structure observed is indeed dominated by lenslet diffraction
effects.

At the other performance extreme, a CW Cr:Nd:GSGG, TEM,, laser
(AMOCO Model 1061-40P) was used to illustrate the interference effects
resulting from a source that can be characterized as highly spatially co-
herent. As expected, the intensity profile shown in Fig. 16a displays both
diffraction and interference effects. The hexagonal shape of the lenslet
elements and a slowly varying intensity modulation earlier attributed to
diffraction effects (see Fig. 15b) are apparent, however, the intensity profile
is clearly dominated by narrow spikes — indicative of interference effects.
Confirmation that these features are a consequence of interference effects
can be made by comparing the calculated and measured periodicity of this
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Figure15 (a) Measured intensity profile at the focal plane of the diffracting beam
integrator with a low spatially coherent source (P/A = 2.50, source laser: Laser
Photonics YQL-102). (b) Comparison of measured and calculated intensity profile
at the focal plane of the diffracting integrator.

structure (see Table 1). It should be noted that Egs. (9), (13), and (14)
derived for the periodicity of the interference pattern are based on paraxial
approximations and assume a one-dimensional lenslet pattern. The calcu-
lated intensity profile and its periodicity can be further studied to include the
effects of both the hexagonal lenslet array structure and system aberrations
using more advanced optical modeling software. Analytical results, obtained
using an optical modeling package,* shown in Fig. 16b reveals the effects of
the lenslet geometry and system aberrations on the intensity profile recorded
at the primary lens focal plane. Assuming a perfectly coherent source, the
model displays the expected two-dimensional dependence for both the inter-
ference periodicity (14.2 um) and intensity.

For the condition of partial spatial coherence a third laser source was
evaluated against the diffracting beam integrator described in Fig. 14. In this
case, the source was a “home built”, multimode, Q-switched, Cr:Nd:GSGG
laser. (This same laser was used extensively to characterize other perfor-
mance parameters of the beam integrator further described in Ref. 23).
Illumination of the diffracting beam integrator with this source produces

* Advanced System Analysis Program — optical software program for geometrical and physical
modeling. ASAP is a trademark of Breault Research Corporation.
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Figure 16 (a) Measured intensity profile at the focal plane of the diffracting inte-
grator with a high spatially coherent source (P/A4 = 8.08, source laser: AMOCO
1061-40P). (b) Calculated intensity profile at the focal plane of the diffracting
beam integrator using the ASAP* modeling software (period = 14.2um).

the intensity profile shown in Fig. 17 at the primary lens focal plane. Close
observation of this profile illustrates effects of both diffraction and inter-
ference. The spot geometry and Fresnel structure displayed earlier in Fig. 15
are visible, however, superimposed on the diffraction pattern are narrow,
high intensity “‘spikes.” Comparing the periodicity of the high-frequency
structure observed in Fig. 17 with that shown in Fig. 16 implies that these
features are indeed generated by interference effects. Moreover, comparing
the peak-to-average (P/A) pixel response from Figs. 15, 16, and 17 (2.50,
8.08, and 3.19) further suggests that for this beam shaping configuration
interference effects will be a major contributor in determining the localized
peak intensity at the intended target (23).
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Figure 17 Measured intensity profile at the focal plane of the diffracting
beam integrator with a partial spatially coherent source (P/4 = 3.19, source laser:
Q-switched, Cr:Nd:GSGQG).

2. Spot Diameter and Averaging

Characterization of the intensity profiles collected along the optical axis of
the diffracting beam integrator described in Fig. 14 yields a location and
estimate for the minimum beam diameter and further describes how the
profile evolves past the lens focal plane. The spot size as a function of
distance along the optical axis is plotted in Fig. 18. In this case a functional
description of the spot size is defined as the diameter in which 98% of the
energy is contained. As expected, the minimum spot size is achieved at the

Injection Characterization - Beam Diameter

900 r
E Focal Plane
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700 f
600 -
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300 £

Beam Diameter (1m)

200 f —eo— With Lenslet Array
100 [ | —0—W/O Lenslet Array

10.00 12.00 14.00 16.00 18.00
Location (mm)

Figure 18 Measured beam diameter along the optical axis with and without the
lenslet array (injection NA = 0.17).
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focal plane of the injection lens and that the growth in the beam diameter
behind this plane is described by the paraxial approximation given by the
input beam diameter and the primary lens focal length (i.e. f~number).
Comparing the beam diameter calculated in Table 1 (310m) to the
measured minimum value shown in Fig. 18 (353 m) suggests reasonable
agreement between the intended design and actual performance. Differences
between the calculated and measured results are easily accounted for in
those assumptions inherent in Eq. (4) for the calculated beam diameter
(i.e. aberration free optical system and an ideal source with essential zero
beam divergence) and the functional definition for beam diameter presented
earlier. Another potentially important feature displayed in Fig. 18 is the
greater effective depth of focus around the focal plane or target location
for the diffracting integrator when compared to the simple lens configura-
tion. The importance of this characteristic could become significant when
the integrator is incorporated into an assembly where alignment or position
insensitivity are considered desirable (i.e. fiber injection, photolithography,
laser drilling, etc.). This characteristic will be discussed in more detail in the
context of the compact fiber injection system presented in Sec. V.B.

The averaging aspect of the diffracting beam integrators and the subse-
quent insensitivity of the intensity distribution at the target plane to
spatial perturbations of the input source is a highly desirable characteristic
of many beam shaping systems. Once again, intensity profiles collected at the
focal plane using various laser sources and different input beam diameters have
been used to illustrate this feature. Applying various apertures to the input
source and hence effectively exposing different near-field features to the lenslet
array can yield some insight into the sensitivity of the diffracting beam inte-
grator to these changes. The results of such an experimental characterization
using the Q-switched, Cr:Nd:GSGG described earlier are shown in Fig. 19.
The contour sequence displayed in Fig. 19 reveals little change in the output
intensity profile (or P/A value) recorded at the lens focal plane until the input
beam diameter is comparable in size to the diameter of a single lenslet element
on the array. When this occurs, the primary injection lens no longer “over-
laps™ or integrates inputs from multiple lenslet elements. In the limit of illu-
minating a single lenslet, this effectively yields the spatial profile that would
result using just the primary injection lens slightly defocused from its focal
plane. (This slight “defocus” is a result of the non-zero optical power provided
by the lenslet element.)

B. Compact Fiber Injection System

Various system applications exist in which the advantages offered by the
multi-aperture integration systems discussed in the chapter can readily be
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Figure 19 Measured intensity profiles at the focal plane of the diffracting beam
splitter with various apertures at the source laser.

applied. Specifically, a number of medical and industrial laser applications
exist in which the limiting factor for performance or additional capability
resides in the transmission of the optical power (or energy) from the source
to the target. Typical transmissions systems for these applications include
the use of fiber optics or “open air’” designs requiring numerous optical
elements to direct and “‘reshape” the laser radiation along the intended
path to the target. Depending on the specific application and configuration
(i.e. target accessibility, laser wavelength, peak power, etc.) the use of fiber
optics is often the preferred transmission system. Although the use of optical
fibers provides the system designer and end user effective control over a
number of application parameters (i.e. beam diameter, spatial profile, target
accessibility, etc.), it is often limited by the maximum power level that can be
reliably injected into and ultimately transmitted to the target.

Maximizing power throughput and minimizing fiber damage requires a
thorough understanding of fiber damage mechanisms and the control of
a number of fiber injection criteria (24,25). In contrast to the “simple’ injec-
tion lens, effective control of a number of these parameters is provided by the
diffracting beam integrator discussed in Sec. V.A and shown in Fig. 14.

Performance characterization of a compact fiber injection system
featuring the diffracting beam integration approach has recently been
completed at the author’s laboratory.* For this application, geometrical

* Sandia National Laboratories — Sandia is a multi-program laboratory operated by Lockheed
Martin for the United States Department of Energy under Contract DE-AC04-94AL85000.
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and mechanical constraints were significant factors in determining the
optical architecture employed to effectively integrate and optically couple
a miniaturized, Q-switched laser source with the desired fiber optic trans-
mission system. Mechanically constrained in the overall length of the fiber
injection and alignment system to less than 25 mm, more complex beam
shaping techniques were quickly abandoned and the more traditional simple
injection lens approach was initially evaluated. However, as Fig. 20 sum-
marizes, the simple lens approach for high-power applications imposes a
number of functional limitations on the power or energy that can be reliably
injected and transmitted by the optical fiber. With a single injection lens
element, the ultimate limitations and performance variability are in practice
a combination of the low air breakdown threshold and the strong inter-
dependence of the laser source characteristics and injection alignment to
the peak optical fluence incident on the fiber face. It is worth noting that
these issues are further exasperated by the use of short focal length lenses
and high peak power, multimode lasers — both conditions inherent in this
application.

Effective control of a number of those fiber injection issues shown in
Fig. 20 are provided by the diffracting beam integrator evaluated and dis-
cussed in Sec. II. Beyond those results presented earlier illustrating the
effects of diffraction, interference, and spatial averaging on the intensity
profile at the target (or fiber) plane, a brief performance comparison of
the simple injection lens and the diffracting beam integrator is discussed
in the following material.

With the simple injection lens approach the conditions imposed to
avoid air breakdown and provide “adequate” filling of the fiber NA are
diametrically opposed. Avoiding air breakdown with the simple lens implies
controlling the minimum spot size and hence the lens focal length.

Injection Lens

Lens Focus

Fiber Optic
Numerical Aperture (NA)

® Low air breakdown thresholds - all o NA of injection system limited by
energy focused at single foci need to avoid air breakdown

e Spatial profile @ fiber strongly e Exit profile and potential for damage
dependent on input laser and alignment  internal to the fiber dependent on the

e Beam diameter @ fiber face is strong initial Mode Power Distribution
function of lens displacement (MPD) incident on the entrance face

Figure 20 Fiber injection issues using the simple plano-convex injection lens.
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Unfortunately, as the lens focal length is increased to accommodate a higher
threshold breakdown, the injected entrance angle or NA to the fiber is
correspondingly decreased. In contrast, the diffracting integrator distributes
the input laser energy over a larger cross sectional area and into multiple
foci representing the number of active lenslet elements. Consequently, elim-
inating air breakdown allows the designer the freedom to select the primary
lens focal length to better match the acceptance angle of the optical fiber.
However, as discussed in Sec. I1.A, as the focal length of the primary lens is
varied the f-number of the lenslets must be correspondingly adjusted to
maintain the desired spot size per Eq. (4). Maintaining the spot size is
achieved at the expense of changing § or the Fresnel number defined in
Egs. (3) and (7) respectively. It is the interdependence of the lens focal length
and ( that must be optimized given the specifics of the desired injection
geometry.

Another important characteristic provided by the diffracting beam
integrator in the evaluated fiber injection system is the large depth of field
discussed in Sec. V.A.2 (Fig. 18) and the alignment insensitivity to the input
source that is a result of the lenslet’s spatial averaging behavior (Fig. 19).
The large depth of field enables the designer to use a very simple mechanical
mount that is required to provide only gross adjustment capabilities along
the lens optical axis.

A more troublesome design issue with fiber injection systems and a
parameter substantially relaxed by the use of the diffracting beam integrator
is the alignment or centralization of the input beam on the primary injection
lens. As shown in Fig. 21, when the input beam is displaced across the

Input 5.0mm Lens 7.0mm

Source
Alignment

Ax=-1.0mm Ax=-0.5mm Ax=+0.5mm  Ax=+1.0mm

Simple Lens

P/A=585 P/A=495 PA=412 P/A=533 P/A

Diffracting
Beam Integrator

"P/A=303 P/A=293 P/A=304 PA=305 P/A=312

Figure21 Measured intensity profiles at the fiber face with lateral misalignment of
the source.
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injection lens without the lenslet array the spatial intensity profile incident at
the fiber face is strongly affected by system aberrations — resulting in higher
peak fluences physically decentered from the fiber core. In contrast, when
the lenslet array is added the spatial profile (or P/A value) remains
unchanged over a wide range of lateral misalignment. Once again insensi-
tivity to alignment significantly relaxes the mechanical requirements for
orienting the laser source to the fiber injection system.

V. SUMMARY

In this chapter we have presented the theory and design of multi-aperture
beam integration systems. These systems are especially applicable to the
shaping of multimode laser beams that are characterized by an irregular
irradiance pattern that frequently varies with time. The major assumptions
applicable to the design and analysis of a multi-aperture beam integration
system are stated explicitly.

As discussed in Chapter 2 and 3, 3, or equivalently the Fresnel num-
ber, is again an important parameter in determining the performance of the
beam shaping system. The basic concepts and equations needed for system
design are developed. Diffraction and interference effects, associated with
multi-aperture beam integration systems are treated in detail. The impact
of the input beam spatial coherence on beam integrator performance is
analyzed.

Experimental data illustrating the effects of diffraction, interference
and spatial coherence on beam integrator performance is presented.
Finally, we discuss the design and present data for a diffractive multi-
aperture beam integration system for optical fiber injection.
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Classical (Non-laser) Methods

David L. Shealy
University of Alabama at Birmingham, Birmingham, Alabama

I. INTRODUCTION

In this chapter, the design and analysis of non-laser optical systems used for
beam shaping will be discussed. Geometrical optics is used to evaluate the
irradiance throughout the optical system. A method based on differential
equations is presented for evaluating the contour of an optical surface
(mirror or lens) that will transform a given input beam profile into a
specified output beam profile or irradiance distribution over a detector
surface. Non-laser beam shaping differs from laser beam shaping in two
major ways. First, it deals with more general sources, such as Lambertian
sources, line sources, or LEDs. Second, it is only concerned with providing a
certain irradiance distribution at a particular surface. It is not concerned
with propagating a beam beyond that surface or form of the irradiance
distribution at intermediate points.

Early thoughts of beam shaping in non-laser systems can be traced to
before the days of Archimedes and his burning glass (1,2), where optics was
reported to concentrate — to increase the power density of — solar radiation.
The literature is rich with reports of various optical systems used as solar
collectors (3-9). Welford and Winston (10) have presented a good account-
ing of non-imaging (non-focusing) optics used as solar collectors, including
an ideal light collector (11,12), which concentrates a beam by the maximum
amount allowed by phase space considerations. Burkhard and Shealy (13)
have used a differential equation method to design a reflecting surface,
which distributes the irradiance over a receiver surface in a prescribed man-
ner. McDermit and Horton (14,15) presented a generalized technique for
designing a rotationally symmetric reflective solar collector, which can heat
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the collector surface in a prescribed manner. Beam shaping has also been
used in opto-electronics to achieve maximum power transfer between a
micro-optics light source and an optical fiber (16,17), in radiative heat
transfer (18-20) in illumination applications (21-24), and for reflector synth-
esis (25,206).

In the next section, ray tracing and the flux flow equation are discussed
within the context of design and analysis of non-laser beam profile shaping.
For analysis, the flux flow equation can be used to compute the irradiance
over any surface within an optical system. For design, the flux flow equation
has been inverted to give a differential equation for the shape of one optical
surface of the system, when the input and output beam profiles are known.
Section IIT discusses application of this design method for a point and
Lambertian source of radiation.

Il. THEORY OF NON-LASER BEAM PROFILE SHAPING

For non-laser systems, a typical beam shaping system design goal is to
illuminate a detector or substrate surface with a specified irradiance distri-
bution. For laser-based systems, Chapter 4 (Sec. II.A) demonstrates that
shaping an irradiance profile can be achieved by using the energy balance
condition to determine the geometrical shape of one optical surface (lens,
mirror, or GRIN profile) of the system. In addition, laser beam shaping
applications often seek to retain the output irradiance profile as the beam
propagates (a collimated beam). This can be achieved by requiring that the
system has a constant optical path length between the input and output
surfaces, as demonstrated in Chapter 4, Sec. II.B. This propagation con-
straint is not needed in non-laser applications. The following theory, then,
extends the laser analysis of Chapter 4 to the more general sources found in
non-laser systems.

Ray tracing (27) is widely used to simulate the performance of both
imaging and non-imaging optical systems. By assigning to each incoming
ray equal energy density, then by counting the number of rays crossing a
unit of area within the optical system, the irradiance can be computed
throughout the optical system. Kock (28) reports a method to simplify
photo-radiometric calculations of optical systems by using a reference
sphere and ray tracing. The flux flow equation (29,30) offers an alternate
approach for evaluating the irradiance within an optical system. The flux
flow equation along with the ray trace equations are used to monitor the
change in size of an element of area of a bundle of rays (31) as the wavefront
propagates through the optical system. The flux flow equation depends on
the beam parameters and the shape/orientation of the optical surfaces and
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allows the irradiance to be computed along a ray path as it propagates
through an optical system. The flux flow equation can also be considered
as a differential equation of the optical surface contour, which can be solved
if the input and output beam profiles are known. In the next section, con-
servation of energy within a bundle of rays is used to derive two alternate
expressions of the flux flow equation. Then, in Sec. II.B, the flux flow
equation is used to formulate a method based on differential equations
for design of non-laser beam shaping systems.

A. Irradiance (llluminance) Analysis with the Flux Flow
Equation

In this section, a formula is derived for the flux density (irradiance or illu-
minance, which is the energy per unit area per unit time) of a ray passing
through an optical system. This formula, which has been labeled the flux
flow equation in the literature, can be expressed as the ratio of the products
of the principal radii of curvature* of the wavefront as it approaches and
leaves an optical surface. The principal radii of curvature and torsion of the
incident and reflected wavefront are related to similar quantities of the
reflecting surface using a generalization of the Coddington equations (32)
— a procedure also known as generalized ray tracing (33).

Assume that the flux density incident upon an optical interface surface
s along the direction of a particular ray is denoted by o(r). If i is the angle of
incidence of a ray upon the element of surface area da on s, the total flux
incident upon da is given by

dF = o(r) cosi da. (1)

The radiation is reflected (or refracted) to the element of area dA4 on surface
S as shown in Fig. 1. Then, flux density over the surface S is given by

Z'_I; = Ey_ys = o(r)7(r) cosi(r) <5—Z> (2)

where 7(r) is the reflection or transmission coefficient at the point r on
surface s. If the radiation incident upon surface S is reflected or refracted
to another surface, then the process of evaluating the flux density along a
ray path within an optical system can be generalized to an arbitrary number
of surfaces (29). The problem now is to evaluate the ratio of elements of
surface areas, (da/dA), along a ray path.

*See Appendix A for a discussion of the principal radii of curvature of a surface and other basic
concepts from differential geometry and the theory of surfaces.
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Figure1 Illustration of beam reflected from surface s to surface S.

The ray trace equations, Chapter 4, Eq. (17) can be regarded as a
coordinate transformation between the elements of surface area da and
dA. Then, the Jacobian, J, of this transformation enables the connection
dA = J da. This approach has been used by Shealy and Burkhard (30,19). A
simpler approach follows by recognizing that the flux is carried by the
wavefront (32). From conservation of energy along a bundle of rays,
Chapter 4, Eq. (10), an clement of area of the wavefront must be related
to an element of area on the optical surfaces s and S. Equation (2) may then
be replaced by either a quadratic equation in the distance r(s, S) between da
and dA along the ray path or an equation involving the wavefront elements
of area before and after reflection (or refraction), which in turn may be
replaced by an expression involving wavefront curvatures.

The position vector of dA4 along the ray after it leaves da is given by

R =r(u,v) + r(s, S)A(u,v) (3)
where
() = §x(, 0) + ] 7(2, ) + K 2(u,v) 4)

is the equation of the mirror surface s expressed in terms of the parameters
(u,v). The quantity r(s, S) is the distance along the ray measured from the

Copyright © 2000 Marcel Dekker, Inc.



point of reflection da on surface s to d4 on surface S. A(u,v) is the unit
vector along the reflected ray and is related to the incident ray vector a by

A =a—2n(a-n), (5)

where n is the unit normal vector to the mirror. Equation (3) can also
be viewed as an equation of the reflected wavefront in the vicinity of the
ray, when the constant phase condition as measured from the source is
considered.

To map a bundle of rays continuously across an optical surface s, the
following relations hold

da cosi = dW (s), (6)
dacosi’ = dW’'(s) (7)

where i’ is the angle of reflection (or refraction), dW (s) is an element of area
on the wavefront incident upon da, and dW’(s) is an element of area on the
wavefront reflected from da. At surface S, similar relations hold:

dAcosI = dW(S), (8)
dAcosI' = dw'(S). )

Now, derivations for two alternate expressions of the flux flow equation will
be presented, which involve evaluating the ratio (da /dA ) — the first case — in
terms of the partial derivatives of the direction cosines of the reflected ray
vector A and the equation of the mirror surface s. In the second case, the
flux flow equation is expressed in terms of the principal curvatures of the
incident and reflected wavefront at S and s, respectively.

1. Flux Flow Equation — First Case

The first expression for the flux flow equation is obtained by evaluating the
ratio (da /dA) from the equation of the surface and the ray trace equation
relating da to dA. An element area on the surface s is equal to the magnitude
of the vector cross product of the independent surface-tangent vectors

da=1ry x r,|dudv=./gdudv (10)
where
g:guugvv_gtzwv (11)
guu = rll 'ru7 g’l}U = r’L' -r’l}7 gu’v = ru ‘r’U (12)
_ [or(u,v) _ (0Or(u,v)
r, = < o ) and r, = ( ) (13)
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See Appendix A for derivation of Eq. (10). From Eq. (8), the element of area
dA can be expressed in terms of an element of area dW (S) on the wavefront
incident upon S as follows:
dw(S)
d4 = ————. 14

cos/l (14)
Evaluating dIW(S) in terms the coordinates (u, v) in similar manner as in Eq.
(10) leads to

AW (S) = A- (aRg;, ”)) x <8qu‘}’ ”)) du dv (15)

where the magnitude of an element of area on the wavefront is obtained by
projecting the vector cross product along the direction of the ray vector A,
which is also normal to the wavefront. Using Eq. (3) to simplify Eq. (15)
leads to the following:

dw(S) ={A-[r, xr,] +r(s,S)A-[r, x A, + A, x1,]
+12(s, S)A-[A, x A,] } dudv (16)

where the subscripts (u,v) of vectors r or A represent the partial derivatives
with respect to u or v, as defined in Eq. (13). Putting Eq. (16) into Eq. (14)
and using this result with Eq. (10) leads to the following expression for the
ratio of (da/dA):

da
i
cos/
{A-Ir, xr,]+r(s,)A[r, x A, + A, xr,]+ (s, S)A*[A, xA,]}/\/g
(17)

Define the denominator of Eq. (17) to be #(s)

L(s) = Lo(1) +r(s, S)Li (1) + (s, S) Ly(1) (18)
where

Ly(1) = A*[r, x1,]/\/g = cosi’, (19)

Ll(l) :A'[ru XAU+AM X rv]/\/g’ (20)

Ly(1) = A-[A, x A, ]/ /8. (21)
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Substituting Eq. (17) into Eq. (2) gives the following expression for the
irradiance over surface S

o(r)7(r) cosicos/
E{/S*(/S = f(v)

with an immediate generalization to » surfaces (29). Equation (22) has been
called the flux flow equation. So far, only the conservation of energy within
a bundle of rays has been used to derive the flux flow equation. The law of
reflection is introduced at each optical surface when evaluating #. Detailed
discussions of using the flux flow equation to compute irradiance distribu-
tions for reflective and refractive optical systems have been reported in Refs
34 and 35. For example, Fig. 2 shows the contours of equal irradiance over a

(22)
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Figure 2 Contours of equal irradiance on a plane for light reflected from a para-
boloid. Flux density values associated with each contour represents the percentage of
light incident upon a specific region of the receiver plane. The reflection coefficient of
the mirror was assumed to be one. (From Ref. 34.)
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plane for light reflected from a paraboloid; Figure 3 shows the contours of
equal irradiance over a plane for light reflected from a cone; and Fig. 4
shows the contours of equal irradiance over a plane for light refracted by a
convex-plano lens.

Explicit expressions for the terms Ly, L;, and L, in Eq. (22) have been
reported in the literature for reflection or refraction within multi-interface
optical systems (29). In case of reflection of collimated light from a mirror,
these coefficients are given by

Ly(1) = cosi’ (23)
Li(1) = 4H cos® i + 2K, sin* i (24)
L,(1) = 4K cosi’ (25)
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Figure 3 Contours of equal irradiance on a plane for light reflected from a cone.
Flux density values associated with each contour represents the percentage of light
incident upon a specific region of the receiver plane. The reflection coefficient of the
mirror was assumed to be one. (From Ref. 34.)
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Figure4 Contours of equal irradiance on a plane for light reflected from a plano-
spherical lens of index of refraction 1.544. Flux density values associated with each
contour represents the percentage of light incident upon a specific region of the
receiver plane. The transmission coefficient of the lens was assumed to be one.
(From Ref. 35.)

where H, K, and K,, are the mean, Gaussian, and normal curvatures,
respectively, of the mirror and can be expressed in terms of the equation
of the mirror surface and the direction of the incident light using the follow-
ing expressions:

[buub'm' - bLG]
= L~ Cw] 26
. (26)
_ [ uubvv - 2guvbuv + gvvbuu]
H= 7 (27)
Kysin?i=S da’b (28)
i,j=u
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or or o’r

_ 2| oF ory |
buw = & <8u> X (81}) <8u 81})‘ (29)

i i or ; or

i il 2 2 . Y7
ad=g"a <8u> +ga (8@) (30)
gllll — &; () — @; gll'U — _@ . (31)

g g g

For a brief discussion of some concepts from differential geometry, see
Appendix A or Ref. 36. Alternate formulas for these curvatures will be
presented in Sec. I1.B when the flux flow equation is used to design a rota-
tionally symmetric optical system for non-laser beam shaping.

Combining Egs. (18), (23)-(25) with Eq. (22) leads to the following
expression for the flux flow equation for reflection of collimated light from a
Mirror:

o(r)p(r)cosicos [
|cosi’ + 2r(s, S)[2H cos? i + K, sin” i] + 41%(s, S)K cosi’]|
(32)

Ey_as =

Fock (37) has reported a similar expression for the intensity of a beam cross-
section which has been reflected from a surface.

It is interesting to note that the flux flow equation (22) depends on the
first and second derivatives of the equation of the optical surface with
respect to the coordinates (u,v). Thus, it follows conceptually that if both
the input and output beam profiles are known functions of the aperture
coordinates, then the flux flow equation represents a differential equation
which can be used to determine the shape of the optical surface s. This
approach to optical design of non-laser beam shaping systems will be dis-
cussed in Sec. I1.B.

2. Flux Flow Equation — Second Case

The second expression for the flux flow equation is obtained by expressing
the ratio (da /dA) in terms of element of area on the wavefront before and
after reflection or refraction. These results are then expressed in terms of the
wavefront curvatures which lead to the second alternate expression of the
flux flow equation. Both expressions of the flux flow equation are equivalent
(32). Using Egs. (7) and (8), (da /dA) can be written in the form

da _cosl dW'(s)
dA  cosi' dW(S)

: (33)
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Then, from Eq. (2) the flux density over surface S can be written as

cosi cosI dW'(s)

Eyygs = o(r)7(r) cosi’  dW(S)’

(34)

We will show (justify) that an element of area on the wavefront can be
expressed in terms of the principal radii of curvature of the surface. The
principal radii of curvature of an element of area on a surface are the
maximum and minimum curvatures of the surface at that point*. They
are found by taking a plane through the surface normal at a point and
rotating it around the normal. The intersection of the plane and the surface
forms curves.

Born and Wolf have shown that there are two focal (imaging) points
for each point on a wavefront (38). The caustic surface has also been defined
(32) to be the loci of the focal (imaging) points of an optical system. The
irradiance, as computed from the flux flow equation (see Eq. (22), for exam-
ple), is infinite on the caustic surface, which occurs in geometrical optics
when d4 = 0. Points on the caustic surface for rays reflected from a mirror
surface s are computed by setting #(s) in Eq. (22) equal to zero and solving
the resulting quadratic equation for r(s, S)

L(s) = Ly(1) + (s, S)L; (1) 4+ r*(s, S) Ly (1) = 0. (35)

The two roots of Eq. (35) are labeled [r(s), r,(s)] and represent the distance
from the point of reflection to one of the focal (caustic) points on the ray
from da. Stavroudis and Fronczek (39) have shown that the caustic points of
a wavefront are the principal radii of curvature of the wavefront. Therefore,
[r1(s), r2(s)] are the principal radii of curvature of the wavefront as it leaves
da on surface s. Solving the quadratic equation (35) for the distance from ds
to the caustic surface gives

+\/L2 —4Ly(1)Ly(1)

ri(s) = L) (36)
~Ly(1) = JLH(0) = 4Ly()La(1)
rafs) =— ¢2L2<1> : ()

where the +(—) of the radical in Eqs. (36)—(37) was arbitrarily assigned to
r1(r,), respectively.

*See Appendix A for a discussion of some concepts from differential geometry which may be
helpful to the reader in better understanding the physical meaning of the different curvatures of
a surface discussed in this chapter.
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Recognizing that r(s,.S) is the distance along ray path from da to dA4,
then it has been shown in Refs 32 and 40 that the principal radii of curvature
of the wavefront as it reaches d4 are given by

r1(S) = ri(s) = r(s,S)

(S) = ra(s) = r(s,S)
where the optics sign convention (41) for radii of curvature* has been used
in Eq. (38). Further, it has been shown in Refs 32 and 40 that

aW'(s) _ nnl) )

dw(S)  ri(S)r(S)’

which permits Eq. (34) to be written in terms of wavefront principal radii of
curvature:

(38)

cosi cosl ri(s)ry(s)
cosi’ 1 (S)r(S)”

The generalized ray trace equations (32,33) are used to compute the princi-
pal radii of curvature of a reflected or refracted wavefront in terms of the
curvatures and torsion of the incident wavefront and optical interface.
References 32 and 40 provide additional details for using the flux flow
equation to evaluate irradiance distributions over surfaces of an optical
system.

Egs—as = o(r)7(r) (40)

B. Optical Design of Non-laser lllumination Systems

As noted earlier, when the input beam profile and irradiance over a receiver
surface are given, the flux flow equation can be viewed as a second-order
differential equation that can be solved for the contour of one optical sur-
face. This approach to optical design will be discussed in Sec. I1.B.1.
Equivalently, the energy balance condition and ray trace equation can be
used to obtain a first-order differential equation for the contour of one
surface in the system, as discussed in Sec. I1.B.2.

1. Using the Flux Flow Equation

As noted in Sec. II.LA the flux flow equation (22) or Eq. (40) depends
on the first and second derivatives of the surface equation r(u,v) of the

*The radius of curvature of a surface is positive if the center of curvature of the surface is
located to the right of the vertex of the surface with respect to the optical axis, when the light is
traveling from the left to the right. Otherwise, the radius of curvature of a surface is negative.
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mirror as well as on the direction of incident radiation and of(r).
Therefore, the flux flow equation may be considered as a differential
equation for the shape of the mirror. If both the input and output
beam profiles are given along with the geometrical surface parameters
(boundary conditions), then the resulting differential equation can be
solved for the shape of the mirror.

To illustrate this approach for design of a non-laser beam profile
shaping system, consider a collimated beam with irradiance profile o(r)
incident upon a rotationally symmetric mirror shown in Figs. 5 and 6.

The Fresnel reflection losses are not considered in this design
approach, i.e., put 7(r) =1 in the flux flow equation. Assume that the
equation of the mirror surface can be written as

r(r, ¢) = ircos ¢ + jrsin ¢ + kz(r) (41)

where (r, ¢) are the polar coordinates in the x—y plane, and i, j, 122 are the
Cartesian unit vectors. The term z(r) is an unknown function to be deter-
mined by solution of the flux flow differential equation to be written out

below.
................................. P.... - [ ——— i
Merror, 2zt
Incident 20
Beam, a
..\.-..wv-..-* N

¥

Receiver, Z(R)}

Figure 5 Collimated beam incident upon mirror and reflected to detector.
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The metric coefficients of the mirror are computed from Egs. (10)—(13):

g =1+ z'?
8gp = ”
gro‘ =0

g= r2(1 —|—z'2).
The unit normal vector on the mirror surface is given by

r,Xry, —iz'cos¢—jz'sing+k

VE Vite?

n—
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where z’ = (dz(r)/dr). Assuming the light incident upon the mirror is along
a=

the z-axis ( k), then the cosine of the angle of incidence on the mirror is
given by
cosi—a-n—é (44)
The direction of reflected light from the mirror can be computed from
Eq. (5):
22'(icos ¢ + jsin gi)) —k(1-27)
A= . (45)

(1+27)

The flux flow equation for reflection from a rotationally symmetric mirror
can now be evaluated explicitly using Eq. (17) where the partial derivatives
of r and A with respect to (r, ¢) are explicitly evaluated using Eqgs. (41) and
(45). However, this direct method for evaluating the flux flow differential
equation is very tedious and will not be discussed any further. Rather, the
flux flow equation for reflection of collimated radiation from a mirror will
be evaluated using Eq. (32), expressed in terms of the mean, Gaussian, and
normal curvatures of the mirror, leading to a differential equation for the
mirror surface.

From the theory of differential geometry of surfaces (36) and previous
work (30,32), the mean, Gaussian, and normal curvature of a surface can
be written in terms of the metric g,, and second fundamental form b,
coefficients of a surface by the following expressions:

(grrb¢¢ — 28,pbrp + grrbqj@)

H= o8 , (46)
bbyy — (b,y)°
K: r ¢¢ (’G)) , (47)
g
4,9 . .
K,sin’i=""da’ by (48)

i,j=r
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1 821. V,¢ I 7
by = 7 lri X1 <8(z—8])>] fori,j=ror¢ (49)
d=g"ar +¢%r, 0
gr =50 g0 8 g T80 (51
g g J

or explicitly for the application shown in Figs. 5 and 6 using surface equa-
tion (41) and Eq. (42) for the metric coefficients,

(8221/

or? ) rz’

b, = Wa by = W’ byy =0,

r 1 heb 1 ro

g :(]+Z/2)’ g(DO:r_z’ goz(), (52)
Z/

ad = m, a‘/) =0. (53)

z

where z” = (8%z/8r*). The mean, Gaussian, and normal curvatures of the
surface are given by the following expressions:

.
=1 ﬁ] , (54)
Z/Z”
K= T (55)
) Z/2Z//
K, sin“i = m (56)

Then, the flux flow equation for collimated light reflected from a rotation-
ally symmetric mirror can be explicitly written from Eq. (32) in the following
form:

o(r)cosicos!

(Z_,> +ZN (Z_,>Z”
. r r
COS1 1 +2V(S,S) m +41’2(S,S) m

Ey_qs =

(57)
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or, after factoring the denominator,

o(r)cosl

E; us = . 58
di—ds - 2r(s, S)z' 14 2r(s, S)z" (58)

r(1+z"?) (1+2?)

Using the following relationships,
R—7) 1427

5.8 = B0 rpy L20) (59)

2:' \ (dZ (L= 2"

14+z7?)\dR 1427
cos/ =A-N= , (60)

()
dR

where N is the unit normal vector to the receiver surface S, and Z(R)
specifies the shape of the receiver surface S. Then, the flux flow equation
(58) can be written as a second-order differential equation for the mirror

surface
2z’ aZ n 1-z"?
z" 1 < o(r) >(1) 142) \dR 142"
2/ (R=r) | \Eg-as) \R | A
T \ar

Equation (61) is equivalent to Chapter 4, Eq. (98) and to the results of
McDermit and Horton (14,42) [Eq. (3.14) of Ref. 14 and Eq. (13) of Ref.
42]. When appropriate boundary conditions are given, then Eq. (61) has
been solved for the shape of the mirror surface that will illuminate the
receiver surface S with a prescribed irradiance for a given source profile.

(61)

2. Using the Conservation of Energy Condition

Instead of using the second-order differential equation (61) for evaluating
the contour of the beam shaping optics, the energy balance equation,
Chapter 4, Eq. (10), can be integrated and combined with the ray trace
equations to obtain a first-order differential equation for the reflecting sur-
face. This approach has been used by Schruben (21) to design a mirror
which illuminates its aperture with a specified distribution. This approach
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is also equivalent to using the flux flow equation to obtain a second-order
differential equation of the mirror surface, Eq. (61).

Consider the rotationally symmetric geometry shown in Figs. 5 and 6.
The radiation is incident upon reflector surface s with equation z = z(r). The
equation of the receiver surface S is Z = Z(R). The flux density o(r) is
incident upon a circular ring about the z-axis of area 27r dr and is reflected
to a circular ring on the receiver surface S of area dA4. The equation of the
receiver surface S can be written in terms of the polar and radial coordinates
@, R]

R(®,R) =i+ Rcos® + jRsin® + kZ(R). (62)

Then, applying Egs. (10) and (42) to the receiver surface S, a rotationally
symmetric element of area on the receiver surface can be written as

27
dA = J G'?d® dR = 2nR\/1 + (dZ/dR)* dR (63)

0

where
0Z(R)\*
_ 2 2
G—GRRG¢¢ Gch R 1+( aR )
L (9Z(R)Y (64)
G- 1+ (V0

G<I><I' :Rz, GR<I> =0.

The element of area dA in Eq. (63) represents a circular ring on the receiver
surface as illustrated in Fig. 7.

When the receiver surface is a disk, as shown in Fig. 6a,b, Z = const.
and d4 = 2wRdR. For a spherical receiver, as shown in Fig. 6c¢,

1/2
- R>C? / 27R dR
1 - CR?

R=——— (65)
when the equation of the spherical receiver surface is written in a form

dA =27
V1-CR
similar to that give in Chapter 4, Eq. (46),

CR?
Z(R) = -
14+v1-C2R

R — x>y y? (66)
_ 1
"~ radius of spherical surface
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Figure 7 Rotationally symmetric beam shaping mirror and spherical detector.

The energy balance equation, Chapter 4, Eq. (10), is

dz\*
ERy[1+ (ﬁ) dR=ord (67)

where E gives the irradiance on the receiver surface. When the receiver
surface equation is specified, then both sides of Eq. (67) can be integrated.
E may be an arbitrary function of position on S, but it must have an
adjustable parameter so that conservation of energy is satisfied
between the input beam and receiver surface. For a flat receiver, Z = Z,,,
conservation of energy between the input beam and receiver surface is given
by

R r
J ERdR:[ ordr. (68)

Ry Jry

For uniform irradiance over a flat receiver with Ry, =0, ry, rp, Ry # 0,
integrating Eq. (68) gives

()
EO = 0———. (69)
R;
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This value of E is substituted into the integrated form of Eq. (68) to yield a
connection between r and R

o)

R= B (70)
Equation (70) represents conservation of energy between the input beam
and receiver surface and can now be used with the ray trace equations to
write down a first-order differential equation of the reflector surface
required to provide this illumination over the receiver.

A unit vector along the reflected light for this geometry is given by
Eq. (45). Then the ray trace equation between reflector and receiver in
the r—z plane is given by

(R—r) 27/

Z-2 1) 7
Equation (71) can be solved as a quadratic equation for z’ to give
Z,:<ZA—Z()):|: 1+<Z—Zo>2: Z—ZO
r—R r—R ‘ 0'(1‘2—7’(%)
/ 3
2
-7
o1 [—2=2 (72)
a(r2 — ré)
r Z

where the +(—) sign is used when the concave side of mirror is oriented
towards the positive (negative) z direction, and R as a function of r is given
by Eq. (70). Equation (72) can be solved numerically to determine the shape
of the reflector. The initial conditions are z = z, when r = r,. Reference 13
contains several solar collectors designed by solution of Eq. (72) for different
initial conditions.

In this section, two methods of designing non-laser beam profile shap-
ing optical systems have been discussed. These methods are equivalent and
are based on the application of conservation of energy between the input
beam and receiver surface and on the ray trace equations between reflector
and receiver. These methods for designing non-laser beam shaping systems
are generally applicable to all forms of incident radiation. In the next sec-
tion, the optical design method using the conservation of energy condition
will be extended to include a point and line source of radiation for heating
and illumination applications.
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lll. APPLICATION TO POINT AND LAMBERTIAN SOURCE

In the previous section, the principle of conservation of energy and the ray
trace equations were used to obtain a first- and a second-order differential
equation used in optical design of beam shaping systems to illuminate a
receiver with a prescribed irradiance when the input beam was collimated.
However, for many non-laser beam shaping applications associated with
heating or illumination, it is important to consider the finite size and loca-
tion of the source of radiation. Schruben (21) reported a differential-equa-
tion-based design of an illumination system for a reflector and small
Lambertian source. Burkhard and Shealy (22) reported an optical design
method for shaping a mirror to transform a point or line source of light into
a prescribed irradiance over a receiver surface. In this section, the first-order
differential equation* discussed in Sec. I11.B will be revised to use with point
or small line (Lambertian) source of light.

Consider the geometrical configuration of point source, mirror and
receiver surface shown in Fig. 8, where the mirror and receiver surfaces
have rotational symmetry around the z-axis.

The current analysis will take into account the fact that the incident
radiation is not collimated, or its wavefront is not planar. This means that
the direction of the incident light from the source will vary over the surface
of the optics, which differs from the beam shaping applications addressed in
Sec. I1.B.2 and shown in Figs. 5 and 6 where the direction of incident light
over optics was constant. A unit vector along an incident ray upon the
mirror is given by

a=r#sinf+kcosf (73)

where (= icos ¢ + jsin ¢) is the radial polar unit vector in the x—y plane. It
will be helpful to understand clearly all the variables used in the present
analysis. (¢, 0, p) are the conventional spherical coordinates, where the z-axis
is also the optical (symmetry) axis. Since the beam shaping optics has rota-
tional symmetry about the optical (z-) axis, it is convenient to use the r—z
plane polar coordinates (p,8) to solve for the shape of the mirror surface.

* Reference 19 contains a formula for the flux flow equation applied to reflection (or refraction)
of point source light to illuminate a receiver surface. This formula for the flux flow equation
could be used to derive a second-order differential equation for design of a mirror for beam
shaping of point source light. However, it is more straightforward to use the two first-order
differential equations resulting from application of conservation of energy and the ray trace
equations than the second-order differential equation obtained from the flux flow equation as
part of the optical design of a mirror used with point or extended source of light.
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Figure 8 Geometrical configuration of point source, mirror and receiver surface.

The slope of the mirror in the r—z plane is given by

, _dz _ (p'cosf— psind)

4
dr (p’sinf+ pcosb) (74)

z

where p' = dp/df, z = pcos®,r = psin @ as shown in Fig. 8. From Eq. (43),
a unit normal vector of the mirror can be written in terms of the coordinates

(p,0) as

—z't+k _ —¥(p’ cosf — psinf) + k(p'sind + pcos)

. 75
/1+Z/2 /p/2+p2 ( )

n—

The direction of the reflected ray A can be evaluated from Eq. (5) to give

t(p">sin @+ 2pp’ cos @ — p* sin6)
(P + %)
k(p">cos +2ppsin — p* cos b)
(" +p%)

A:

. (76)
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Then, the ray trace equation in the r—z plane, connecting the point (r,z) on
reflector to the point (R, Z) on the receiver, is given by
(R—7) A, (p*sinf+2pp’ cosb — p*sin6)

T . 77
Z(R)—z(r) A. (p">cosf+2pp’'sinf — p?cosb) (77)

For a planar receiver surface, Z = Z,, a constant, Eq. (77) can be written as
a first-order differential equation for the reflector surface
{p(Rsinf + Zycos — p)
/ p—
p= j:p\/(—RsinQ—Zo cos + p)* + (Rcosf — Z,sin 6)*}
(pcosf — Z,sin h)

(78)

where the +(—) sign in Eq. (78) is chosen to insure that p’ is positive
(negative) as required by the geometrical configuration of source, reflector,
and receiver shown in Fig. 6. In subsequent calculations in this chapter, the
positive root of Eq. (78) will be used.

In order to solve Eq. (78), the energy balance equation must used to
obtain an expression for R(p, ). For a flat receiver, conservation of energy
condition [Chapter 4, Eq. (10)] becomes

R 9
J 2rE(R)RdR = J 1(0)27r” sin  d (79)
0 0
where 1(6) is the intensity of the source, and the reflectance of mirror has
been assumed to be equal to unity. If the source is a small Lambertian
source (41) along the z-axis, then I(r, ) = I sin 9/r2, where I, is a constant.
If the optics is such that direct illumination from source to receiver can be
ignored, then Eq. (79) can be integrated to obtain the constant Eywhich
insures conservation of energy for this system. For uniform irradiance
over the receiver, E = E;, integrating Eq. (79) over the full beam
[0 € (0y,0,,) and R € (0, R,)] leads to the following result:

I sin 26, — sin 26,
Ey— (R> {em Gyt (2 )} (80)

m

where R,, and 6,, are the maximum values of R and 6. Similarly, for an
isotropic point source, uniform irradiance of the receiver leads to the
following expression for E:

(cos By — cosb,,)

EO = 2]0
R,

(81)
The constants [, 6, 6,, can be chosen to give the desired value of E.

For back-lighting configuration (Fig. 6a), integrating Eq. (79) leads to
an expression for R(#) which can be used to integrate Eq. (78) to determine
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the shape of mirror required for a specific beam-shaping application. For a
Lambertian source,

_ |1

R =
2E,

[2(6 — 6y) — (sin 260 — sin 26y)], (82)

and for an isotropic point source,

21
R= \/—0 (cos by — cosb). (83)
E,

Equation (78) can now be integrated to obtain the shape of reflector that will
transform point source light into uniform irradiance on the back of a detec-
tor. Figure 9a is a scaled drawing of a point source, mirror, and back-lighted
detector of an example solution of this differential equation optical design of
non-laser beam shaping systems. Similar calculations could also be done for
a Lambertian source.

When the optical configuration (Fig. 6b) allows direct illumination of
the receiver from the source as well as from the reflector, the analysis leading
to Egs. (80)—(83) needs to take into account the direct illumination. The
irradiance, Egie, directly incident upon receiver from source, as shown in
Fig. 6b, is given by

Edirect = 0COSX (84)

where o is the flux density from source evaluated at the receiver and x is the
angle between ray and normal to receiver. For a Lambertian source (41)

L
g =00X (85)
ro

where r, is the distance from the source to a point on the receiver. From the
geometry of a direct illumination system, the following relations hold:

VOZN/R2+Z§

. R
siny = Py (86)
Z
cosy = =2

ro
Then, the direct irradiance on receiver is given by
_ RZy,
direct = m-
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Figure 9 Uniform illumination of a flat disk by a rotationally symmetric reflector
for point source light incident upon (a) back lighted and (b) direct lighted config-
urations. (From Ref. 13.)

To obtain a uniform irradiance (E,) over receiver surface when both direct
and reflected light are considered, note that the total irradiance Eiy,(R) at
the receiver is the sum of the reflected light Ecqecieq (R) plus the direct light
Egireet (R) from the source:

Elotal(R) = Edirect(R) + Ereﬂected (R) (88)

If Eiy(R) is to be constant, then Fefecreq(R), Which appears on the left-
hand side of Eq. (79), will be given by

Eeficcted = Erotal — Edirects (89)

and the constant E., needs to satisfy the following integral equation

RIH
J 2w
0

After carrying out integrals and solving for E,, in Eq. (90), one has

9/71
RdR = J Iy27sin’ 6 do. (90)
bo

RZ,1,

Etotal - [RZ + Z(z)]z
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Iy
R,

__\%4/

1 R
Ei = (0,, —6y) — 3 (sin 26,, — sin 26,) + tan ™! <Z’”>

0
O1)

Equation (91) expresses the total energy leaving the sources that is inter-
cepted by the mirror and receiver. The value of E,, from Eq. (91) is put
into Eq. (90) with upper limits of R and € to solve for R(p,f) and subse-
quently solve numerically the differential equation (78) for p(6) the mirror
surface shape (13,21). Figure 9b is a scaled drawing of point source and
reflector which will uniformly illuminate receiver plane when taking both
direct and reflected light into account. This optical design method has been
extended in Ref. 22 to include multiple point sources and continuous line
sources along the symmetry axis when solving for the shape of a mirror
which will uniformly illuminate a detector.

IV. CONCLUSION

The design and analysis of non-laser beam shaping systems has been dis-
cussed in this chapter. The ray trace equations and the principle of conser-
vation of energy within a bundle of rays have been used to derive several
alternate forms of the flux flow equation, Egs. (22) and (40). Equation (22) is
useful when computing the irradiance distribution for a collimated incident
beam. Equation (40) is useful when computing the irradiance distribution
for cases when the incident beam wavefront is not planar and, subsequently,
when the incident beam wavefront curvatures vary over the beam shaping
optics, which happens for point or extended sources near the optics.

The flux flow equation can be used to monitor the irradiance along a
ray path as it propagates through the optical system. When the input and
output beam profiles are known, the shape of a single surface is determined
by a differential energy balance equation. Specific examples of using this
optical design method are presented for collimated, point and Lambertian
sources of radiation.
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APPENDIX A

Summary of Some Concepts and Results from
Differential Geometry*

In general the equation of a surface is a constraint equation between three
coordinates such that when two coordinates are given the third coordinate
will indeed lie on the surface. The equation of the surface can be represented
by the following symbolic equation

w = w(u,v) (A-1)

where [u, v, w] are curvilinear coordinates which themselves are defined in
terms of the Cartesian coordinates [x, y, z]

x = x(u,v,w)

V= y(u? U, W). (A'2)
z=z(u,v,w)

Combining the equation of the surface (A-1) and the relationship between
Cartesian coordinates [x,y,z] of a point and the curvilinear coordinates
[u, v, w] of the same point, Eq. (A-2), one obtains a parametric representa-
tion of the surface:

x = x(u,v)
y :y(u,v), (A'3)
z = z(u,v)

where [u, v] are the curvilinear coordinates of the surface which can also be
considered as surface parameters. It will be convenient to write Eq. (A-3) as
the vector equation

r =r(u,v) (A-4)

where the Cartesian components of the vector r(= ix + jy + ﬁz) are given by
Eq. (A-3).

* For a more complete discussion of differential geometry, the reader is referred to one or more
of the comprehensive books in the literature on this topic, such as Ref. 36.
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The two vectors r, = Or/0u and r, = dr/dv, which are tangent to the
u-parameter curve and the v-parameter curve on the surface, are two linearly
independent vectors in the tangent plane of the surface at a specified point
on the surface and thus, any vector in the tangent plane can be written as a
linear combination of the vectors [r,,r,]. The unit normal vector to the
surface can then be written as the vector cross product of [r,,r,]:

po fuxT (A-S)

“Troxn

The measurement of lengths on the surface is conveniently expressed in
terms of the coefficients:

e Ou Ou Ou

o e (P (0 (02’

v v v v (A-6)
(o o, (o) (a0, (0 (o

Ew =TT =\ 5, )\ 50 Ou ) \Ov Ou ) \ Ov

g’vu = r’U‘rM = gu’u

or by

ik = ¥j Tk (A-7)
where it is understood in Eq. (A-7) that (j, k) may each take on the value of
uorv.

The coefficients g, transform like a second rank symmetric tensor and
are called the metric coefficients of the surface or the coefficients of the first
fundamental form of the surface. The first fundamental form of the surface
is a quadratic expression for the differential arc-length of a curve on the
surface and is given by

or or or or
2 = . — - - o | — -
ds” = dr-dr (814 du+8v dv) (8u dLH_av dv)
= Zuu(du)*+28,, du dv + g, (dv)’
= gud(j)d(k) = gy d(j)d(k). (A-8)
Jik=u

where the simplified (last) expression uses the summation convention which
means that if a given letter appears twice on the same side of an equation,
then the summation of that letter must be carried out. For surfaces, the
summation will be over the two curvilinear coordinates u and v.
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The determinant of the metric coefficients is given by

guu gll’U

S PP

= 8o — (guv)z' (A'9)

By direct computation one sees that the determinant g is identically equal to
the magnitude square of the normal vector r, X r,:

8= |ru X 1'1,|2. (A'IO)

In terms of g one can write the Cartesian components of n:

n,:g1/2<@%_@@>. (A-11)

An expression for the element of area, da, on the surface in terms of the
differentials du, dv is found by separately varying the position vector r(u, v)
of a point on the surface by an amount du and dv, and then take the cross
product of the resulting differential vectors:

da= |7 du x 95 | = v, X 1| dudv =g dudv. (A-12)
du dv

We have seen that a knowledge of the metric coefficients gy is
sufficient for calculating lengths and areas on a surface; however, they
do not uniquely determine a surface. In order to fully characterize a
surface in terms of radii of curvature, for example, it is necessary to
introduce another quadratic form in the coordinate differentials du, dv
which is usually referred to as the second fundamental form of a surface
and is given by

b (i)’ +2b,, du dv + b, (dv)’
or simply by (A-13)

where the summation convention is implied. The second fundamental form
coeflicients, by, will transform like a second rank symmetric tensor and are
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given by

b =r ‘n=n @—Fn@—Fn &

uu uu X (91/{2 y 8u2 z 6142’

PO Px . &y n &z

wo T oudv Y Oudv 7 Oudv’ (A-14)

b'ULl = rULl ‘n= bll’U;

=n 82x—|—n 82y—|—n 822'
o T o? o’

b?)’U = r?)?) ‘n
or when ry = *r/0(j) d(k)

bjk:rjk'n; (j,k:u,v). (A-IS)
The determinant of the coefficients b is given by

b= buubvv - (buv)z' (A'16)

Since the unit normal n to the surface is given by

r, Xr,
— (A-17)
the second fundamental form coefficients, by, can be written explicitly as
p T X Fy T
Lm 7\@ ;
by = T (A-18)
NG
T, X T, T,
b,, = T;
or by
=g (A-19)
Since r; is a vector in the tangent plane,
ri'n=0. (A-20)

And therefore, one has after taking the partial derivative of Eq. (A-20) with
respect to the variable k (= u orv)

rp-n+r;-n, =0. A-21
j j
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Hence, the second fundamental form coefficients b, given by Eq. (A-15) can
also be written as

bjk = _rj'nk. (A'22)
One can now write the second fundamental form as
bjx d(j)d(k) = —dr-dn. (A-23)

One can associate the second fundamental form with the distance from
the tangent plane of a point on the surface to an adjacent point on the
surface. This can be verified if one draws a tangent plane at a point P on
the surface whose position vector is r(u,v). Then, the distance § to an
adjacent point P’ whose position vector is r(u 4+ Au, v + Av) will be given by

6= Ar-n (A-24)
where n is the unit normal to the surface at the point P and Ar is given by
Ar =r(u+ Au, v+ Av) — r(u,v)
or, expanding in a Taylor series,

Ar = (1, Au 4 1,A0) + 1 1, (Au)* 428, Aulv + 1, (Av) >+ -],

(A-25)
Hence, one has to second order in displacement,
6= Ar:n
= 1, n(Au)* 421, nAulv + 1, -n(Av)’]
or in the limit of small displacement
6 = L [by(du)* +2b,y, du dv + b, (dv)’] (426)

=1byd(j)d(k), (j,k summed over u,v)

It is interesting to note that the coefficients by are strictly functionally
dependent upon the properties of the surface at the point P, whereas the
location of the adjacent point P’ is uniquely characterized by the displace-
ment du, dv. Thus, the interpretation of the second fundamental form as
being proportional to the distance between P’ and the tangent plane to the
surface at P seems reasonable.

We shall now be interested in deriving expressions for suitable mea-
sures of the curvature of a surface. The concept of curvature of a surface is
given meaning in terms of the curvature of an arbitrary curve C on the
surface S which is represented by

u=u(s), v=u(s) (A-27)
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where s is the arc-length of C. For such a curve C on S, one could not expect
the unit principal normal p of the curve C, which is given by

1 @r(u(s), v(s)
K ds?

where K is the curvature of C, to lie along the unit normal to the surface. On
the contrary, p and n will make a non-zero angle n which will be a function
of both the curve C and the surface S. The cosine of 7 is given by

COS7) = p-°n. (A-29)

(A-28)

The differentiation of r(u(s), v(s)) with respect to s appearing in Eq. (A-28)
is given by
dr _Ordu  Ordv_ d())

ds Ouds Ovds 7 ds
Pr_d (o) du or Pud (or\do_on o
ds>  ds\Ou) ds Ouds® ds\ov/)ds Ov ds?

B [azr du  OPr dv] du  Or d’u

o ds T oudw ds| ds | ou ds® (A-30)

Oudv ds to2 Ot ds o o ds®
d(j)dik)  d*())
ik ds ds t ds?

Combining Egs. (A-28), (A-29), and (A-30) and making use of Eq. (A-30),
one finds

[Bzr du O dv] dv  Or d*v

d(j) d(k)
ds ds

However, we have already defined rj n as being the coefficients b of the
second fundamental form, and from Eq. (A-8) we have identified ds® with
the first fundamental form g, d(/)d(m). Therefore, Eq. (A-31) becomes

b]k d( ) d(k)
gm d(1) d(m)
It is interesting to note that the right-hand side of Eq. (A-32) is only a
function of the point (u,v) on the surface and the direction (du/dv) of the
curve passing through that point. Thus, at a given point P on the surface S,

if we fix the tangent to the curve, then the right-hand side of Eq. (A-32)is a
constant which we shall denote by K,

Kcosn=rjn (A-31)

Kcosn = (A-32)
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K, is called the normal curvature of the surface S at the point P. From Egs.
(A-32) and (A-33)

Kcosn=K,. (A-34)

(A-33)

If n=0, K=K, andif n=m, K= —K,. Hence |K,| is the curvature of
the intersection of the surface S and the plane which passes through both
the tangent to the curve on the surface and the normal to the surface at P.
Such a curve will be called a normal section of S. One may introduce
the idea of the radii of curvature of a normal section by putting R = 1/K,,
in Eq. (A-33).

We are now interested in obtaining an expression for suitable measures
of the curvature of a surface in terms of the coefficients g; and by . We shall
see that these measures can be expressed in terms of the two primary
curvatures of a surface. Writing out Eq. (A-33) explicitly one has

b (du)*+2b,, dudv + by, (dv)’
gult(du)2+2gu1; du dv + g’l}'U(d/U)z
or, in terms of the direction ¢ = du/dv, (A-35)

n

buud” + 2b,uq + by,

K, = -
&uqd” +28uwq+ &

which can be written as
(buu - Knguu)q2 + 2(bu'v - Kngun)q + (bm; - Kngm;) =0. (A'36)

The curvature K, in Eq. (A-36) is a function of ¢g. Therefore, if one differ-
entiates Eq. (A-36) with respect to ¢ and makes use of the condition for an
extremum value of K,,, namely, dK,,/dq = 0, one obtains

(buu - Knguu)q + (buv - Knguv) =0. (A'37)

In order to solve for the explicit values of the extremum values of the normal
curvature, one must eliminate ¢ between Eqs. (A-36), (A-37) and solve for
K,. One obtains

(bm,v - Kngvv)(buu - Klgllll) - (bm; - Kzgu'u)z =0

or

1 b
Kg =+ é (guubzm - 2gm;bu’z,v + gm;buu)Kn +§ =0. (A'38)
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The principal curvatures K;, K,, which are the extremum values of K,,, will
be solutions of Eq. (A-38). It follows then that

(K, — K\)(K, — Ky) = K; — (K| + K3)K,, + K Ky = 0 (A-39)

where the coefficient of K, in Eq. (A-38) is put equal to (K| + K5). It
is conventional to denote the product of K;K, by K, and by comparing
Eqgs. (A-38) and (A-39), one can write

K =KK, = b, (A-40)
g

K is called the Gaussian curvature. In spite of the fact that the Gaussian
curvature given by Eq. (A-40) appears to depend on both the first and
second fundamental forms, it can be shown that K depends only on the
first fundamental form coefficients and their first and second derivatives.

The arithmetic mean (K| + K5)/2 of the principal curvatures is called
the mean curvature of the surface and is denoted by H. From Eqgs. (A-38)
and (A-39) one sees

H= %(Kl + KZ) = i (guubvv - 2guvbuv + grvbuu)' (A'41)
The Gaussian curvature and mean curvature are useful expressions of the
curvature of a surface in terms of the coefficients gy, by,. As seen from
Egs. (A-40) and (A-41), a knowledge of H and K determines the principal
curvatures K, K, of a surface which themselves are extremum values of the
normal curvature K,. Furthermore, by the Euler theorem of differential
geometry, one can express the curvature of a normal section in an arbitrary
direction in terms of the two principal curvatures K;, K, and the angle
between the direction of the curve and the direction of the curve with the
curvature Kj.

This brief discussion of the theory of surfaces is intended only to
highlight some of the key ideas of differential geometry used in Chapter 8
as well as to present an accessible reference to derivations of some of the
results that we have used in this chapter. For a more complete discussion of
differential geometry with application to the theory of surfaces, see Ref. 36,
for example.
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Current Technology of Beam Profile
Measurements

Carlos B. Roundy
Spiricon, Inc., Logan, Utah

I. INTRODUCTION

As explained in earlier chapters of this book, laser beam shaping is a process
whereby the irradiance of the laser beam is changed along its cross section.
In some cases the laser beam is shaped so that it is uniform or flat top. In
other cases it is given a different shape such as a Gaussian or super
Gaussian. In order for this laser beam shaping to be effective, it is necessary
to be able to measure the degree to which the irradiance pattern or beam
profile has been modified by the shaping medium. In some cases the beam
shaping requires a specific input beam. For example, in many cases the input
beam must be Gaussian in order for the shaping to create an undistorted flat
top beam. In this case the beam profile of the input beam must be measured
to assure that the proper input beam is being used. If the input beam does
not have the proper profile, then measurements will tell the user that adjust-
ments to the source beam must be made before attempting to perform the
laser beam shaping. Therefore, laser beam profile analysis becomes an essen-
tial part of effective laser beam shaping.

This chapter describes the general state of the art of laser beam profile
analysis (1-14). It introduces the general need for beam profile analysis,
methods for measuring the laser beam profile, a description of instrumenta-
tion that is used in beam profile measurement, a discussion of the informa-
tion that can be obtained simply by viewing the beam profile, and finally,
how quantitative measurements are made on laser beam profiles, and the
significance of those quantitative measurements.
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Il. LASER BEAM PROPERTIES
A. Unique Laser Beam Characteristics

Laser beams produce light with many characteristics that are unique to this
type of light. Some of the things that make laser beams unique are listed in
Table 1. For example, the monochromatic nature of a laser beam means that
it is typically a single narrow wavelength with very little light at wavelengths
other than the central peak. The temporal nature of a laser beam enables it
to vary from a continuous wave to an extremely short pulse providing very
high power densities. The coherence of a laser enables it to travel in a
narrow beam with a small and well-defined divergence or spread. This
allows a user to define exactly the area illuminated by the laser beam.
Because of this coherence a laser beam can also be focused to a very
small and intense spot in a highly concentrated area. This concentration
makes the laser beam useful for many applications in physics, chemistry,
the medical industry, and in industrial applications. Finally, a laser beam
has a unique irradiance profile that gives it very significant characteristics.
The beam profile is a unique pattern of irradiance distribution across the
beam.

B. Significance of the Beam Profile

The significance of the beam profile is that the energy density, the concen-
tration, and the collimation of the light are all affected by it. Also the
propagation of the beam through space is significantly affected by the
beam profile. Figure 1 shows a number of typical laser beam profiles illus-
trating the variety that can exist. Since such a variety exists in laser beam
profiles, it is essential to measure the profile in any application if the energy
distribution affects the performance of the laser or its intended purpose.
Examples of two different types of ideal laser beams for different
purposes are a Gaussian and a flat top beam. A Gaussian beam allows
the highest concentration of focused light, whereas a flat top beam allows

Table 1 Unique characteristics of a laser beam

Monochromatic (single wavelength)

Temporal (continuous wave to femtosecond pulses)

Coherence (consistent phase between all light elements)

Highly concentrated (focusable to extremely small spots)

Beam irradiance profile (unique spatial power or energy distribution)
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Figure1 Various laser beam profiles: (a) HeNe, (b) Excimer, and (c) nitrogen ring
laser.
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Figure1 (Continued)

for very uniform distribution of the energy across a given area. These two
idealized beams are shown in Fig. 2.

C. Effects of Distorted Beam Profiles

However, lasers rarely exhibit the most uniform irradiance profile.
Sometimes Gaussian beams are highly structured, and often-intended flat
top beams are non-uniform across the top, or may be tilted in energy from
one side to the other. Figure 3 illustrates some real world examples of
distorted beam profiles. For example, in Fig. 3a the highly structured
beam would not focus nearly as well as the ideal Gaussian beam. The tilted
flat top beam of Fig. 3b would not give uniform illumination as intended,
and could cause severe distortion in the process for which it is being applied.

1. Scientific Applications

The significance of distorted beam profiles varies with the application. In
scientific applications nonlinear processes are typically proportional to the
irradiance squared or cubed. Thus a non-Gaussian profile may have a peak
energy as low as 50% of what a Gaussian beam would have under the same
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Figure2 (a)Ideal Gaussian beam for highest concentration of energy; (b) ideal flat
top beam for uniform laser illumination.
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Figure 3 (a) Highly structured would-be Gaussian beam; (b) Tilted or non-uni-
form flat top beam.
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conditions of total power or energy. Therefore the nonlinear process may
deteriorate to 25% or 12% of what is expected. This is a 300% to 700%
error on an experiment that should be accurate to within +5%. Figure 4
shows the beam profiles of a Cr:LiSAF oscillator with subsequent amplifier
outputs when the amplifier is properly aligned and when it is not.

2. Instruments Using Lasers

Instruments using lasers, such as printers, fiber optics, communications, etc.
require a high degree of control of the laser light to accomplish the intended
task. The uniformity, pointing direction and stability, and mode pattern of a
typical laser diode used in instruments can be dramatically deteriorated by
misalignment of the collimating optics or mounting, causing the instrument
not to perform as expected. For example, Fig. 5 illustrates a collimated laser
diode beam being focused into a single mode fiber optic. In Fig. S5b the Z-
axis of the focused laser diode is poorly aligned to the fiber, and much of the
energy is fed into the cladding rather than to the inner fiber. Thus much of
the energy does not come out of the central lobe. In Fig. 5¢ the Z-axis is

() Cr:LISAF Oscillatos ]

e e I (a)

Figure 4 (a) Cr:LiSAF laser oscillator; (b) Cr:LiSAF laser with amplifier well
aligned; (c) Cr:LiSAF Laser with amplifier misaligned.
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Figure 4 (Continued)
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Figure 5 (a) Collimated laser diode beam; (b) Fiber output with diode poorly
coupled into fiber optic (¢) Fiber output with diode well-coupled into fiber optic.
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Figure 5 (Continued)

adjusted slightly, and the major portion of the laser beam is coupled into the
propagating mode of the fiber optic.

3. Medical Applications

There are many medical applications of lasers (15). One of these is photo-
refractive keratotomy (16), in which a flat top beam is used to make vision
corrections. If the homogenizer producing the flat top is out of alignment
and there is a 50% tilt in the flat top, the correction to the eye may be 4
diopters on one side of an iris, with only 2 diopters on the opposite side. The
flat top beam in Fig. 2b would give expected results, whereas the tilted beam
in Fig. 3b would cause severe difficulty. This could account for some PRK
operations causing the patient to end up with non-correctable vision after
the operation. The flatness of the laser beam is also critical in the removal of
port wine stains and in other cosmetic surgery.

Tissue cutting and welding requires an extremely well-controlled irra-
diance density to accomplish the task properly. Finally, many medical appli-
cations, such as photodynamic therapy, use fiber optics delivery systems,
and the efficiency of these systems is strongly affected by the initial align-
ment of the laser beam into the fiber, as shown in Fig. 5.
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Figure 6 (a) Poorly aligned CO, laser cavity; (b) well-aligned CO, laser cavity.
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4. Industrial Applications

In industrial laser applications (17-19) most high-power Nd:YAG lasers
and some CO2 lasers run multimode. The cutting, welding, and drilling
efficiencies of these lasers are directly related to the beam profile. For exam-
ple an Nd:YAG laser with a double peak can cause one cut width in the X
direction, and a different cut width in the Y direction. Also, a beam with a
poor profile can result in hole drilling of a different size than expected, and
welding that is not as strong as necessary.

Figure 6 shows the beam profile of a poorly aligned and well-aligned
CO; laser cavity. An industrial laser shop was using CO, lasers for scribing
of ceramic wafers before breaking them into individual pieces. Most of the
lasers in the machine shop gave extremely good results. However, one laser
gave very inconsistent results, which caused poor scribing, and therefore
very erratic breaking of the ceramic. The laser had been measured by
non-electronic mode burns in wooden tongue depressors, which gave the
appearance that the laser had a uniform output. However, as soon as the
laser was measured with an electronic pyroelectric camera, the high struc-
ture in the laser beam of Fig. 6a became immediately evident. As soon as the
technicians recognized this high structure, they began adjusting the laser
cavity mirrors, and within a short time the beam was improved to that of
Fig. 6b. Incidentally, the beam profile of Fig. 6b was similar to that of the
other lasers that were operating well in this shop. Once the laser was tuned
to the beam profile of Fig. 6b, it gave consistent results in scribing the
ceramic.

lll. LASER BEAM PROFILE MEASUREMENT METHODS
A. Non-Electronic Methods

There are a number of non-electronic methods of laser beam profile mea-
surement that have been used ever since lasers were invented. The first of
these is observance of a laser beam reflected from a wall or other object. This
is by far the simplest and least expensive method of measuring or observing
a laser beam profile. The problem with this method is that the human eye is
logarithmic, and can see many orders of magnitude difference in light irra-
diance. Even though it is logarithmic, the eye can only distinguish 8—12
shades of gray. Thus it is nearly impossible for a visual inspection of a
laser beam to provide anything even approaching a quantitative measure-
ment of the beam size and shape. Thus the beam width measurement by eye
may have as much as 100% error. Figure 7a is a photograph of an HeNe
laser beam being reflected off the wall. While photographic film has even less

Copyright © 2000 Marcel Dekker, Inc.



(a)

(b)

Figure 7 (a) Reflected laser beam; (b) laser beam burn spots.
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dynamic range than the human eye, the figure shows a very intense beam at
the center, but a very large amount of structure far out from the center. This
structure, which one might mistake as part of the laser beam, is less than 1%
of the total energy in the beam. Yet the eye and the film are clearly able to
discern this low energy. In addition, the eye cannot really distinguish struc-
ture in a laser beam with less than 2 to 1 magnitude variation.

Burn paper and Polaroid film are often used for making beam profile
measurements. Figure 7b illustrates thermal paper having been illuminated
by a laser beam. The burn paper typically has a dynamic range of only 3,
unburned paper, blackened paper, and paper turned to ash. Sometimes
skilled operators can distinguish between levels, and give a dynamic range
of 5. The main objection to this manual method is that the spot size is highly
subjective to the integration time on the paper. With longer exposures the
center may not change, but the width of the darkened area could change
+50% or more.

Wooden tongue depressors and burn spots on metal plates are used in
similar methods to those for burn paper. Sometimes the depth of the burn
gives additional insight into the laser irradiance. Sometimes operators learn
from experience with these burn spots, such as which beam tuning gives a
specific result in a specific application. This might be tuning of one burn spot
for cutting, and a different one for drilling holes. However, this measure-
ment system is archaic, crude, and non-quantitative, subjec to the capability
and experience of the operator, and therefore quite unreliable.

Fluorescing plates contribute to being able to see laser beams by con-
verting UV and IR laser beams into the visible, where they can be seen by
the human eye. These fluorescing plates have limited dynamic range, which
adds to the dynamic range problem already described when viewing the
reflected beam.

As shown in Fig. 8 Acrylic mode burns provide quite representative
beam profiles of CO, lasers. The depth of the acrylic burns clearly shows the
irradiance profile of the beam, and it is often possible to see mode structure.
This gives an excellent visual interpretation of the beam profile. However,
the acrylic mode burns are not real time, which makes it very cumbersome
to tune the laser. They also do not enable one to see if there are short-term
fluctuations in the laser beam, which is quite common in CO, lasers. It is
possible that fumes from the burning acrylic may form a plasma at the
center of the hole, which blocks the incoming CO, beam. Unless care is
taken to have a fan blowing the fumes away, the acrylic mode burn will
contain a hole in the center of the image that is non-existent in the beam. An
additional problem is that the fumes from burning acrylic are toxic to
humans, and care must be taken to exhaust these fumes outside of the
work area.
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Figure 8 Laser beam acrylic mode burn.

B. Electronic Measurement Methods

For electronic laser beam profile analysis, it is nearly always necessary to
attenuate the laser beam, at least to some degree, before measuring the beam
with an electronic instrument. The degree of attenuation required depends
on two factors. The first is the irradiance of the laser beam being measured.
The second is the sensitivity of the beam profile sensor. Figure 9 shows a
typical setup for the case where maximum amount of attenuation is required
before the sensor measures the beam.

Typically when measuring the beam profile of a high-power laser, i.e.,
in excess of 50-100 W, the beam has enough energy to burn up most sensors
that might be placed in the beam path. Therefore, the first element of Fig. 9,
the beam sampling assembly, is typically used regardless of the beam profil-
ing sensor. It should be noted, however, that there are some beam profiling
sensors, to be described later, which can be placed directly into the path of a
high-power beam of 10kW and greater.

For mechanical scanning instruments, the beam sampling assembly is
usually sufficient to reduce the signal from high-power lasers down to the
level that is acceptable by such instruments. Also, if the original laser beam
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Figure 9 Optical setup for electronic laser beam analysis.

is in the range of 50 W or less, then often mechanical scanning instruments
can measure the beam directly without using the beam sampling assembly.
The reason that mechanical scanning instruments are able to be placed in
the path of medium power beams is that they usually consist of a single-
element detector with a rotating drum blocking the light from the sensor
during most of the duty cycle of the sensor. The rotating drum either
absorbs or reflects the incident laser beam during a significant part of the
time, and thus high power is not placed on the sensing element.

For camera-based beam analyzers, the beam sampling assembly does
not perform sufficient attenuation to reduce the beam power low enough for
the camera sensor. In this case, usually a set of neutral density filters is
placed in the beam path to reduce the power to the level acceptable by
the camera. In some cases the beam power, even after reflection from one
sampling surface, is too high, and would burn up neutral density filters. In
this case a second reflecting surface is used to further reduce the incident
power before impinging on the ND filter set. This is described in more detail
in the Sec. IV, “Camera Based Instrument Description.”

The neutral density filter assembly can be adjusted over a very wide
dynamic range, as much as from NDO to ND10 (or transmission of 1 to
10719 to reduce the beam power to a level acceptable by typical camera-
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based systems. A detailed description of these ND filter assemblies is con-
tained in Sec. IV.E.2.

The fourth item in Fig. 9, the beam profile sensor, can be either one of
the mechanical scanning devices described in the next section, or a CCD or
other type of camera described in the following section. The beam profile
readout device either consists of a dedicated monitor for reading out beam
profile information, or in camera-based systems, a PC style computer and
monitor.

1. Mechanical Scanning Instruments

One of the earliest methods of measuring laser beams electronically was
using a mechanical scanning device. This usually consists of a rotating
drum containing a knife-edge, slit, or pinhole that moves in front of a
single-element detector. This method provides excellent resolution, some-
times to less than 1 um. The limit of resolution is set by diffraction from the
edge of the knife-edge or slit, and roughly 1 um is the lower limit set by this
diffraction. These devices can be used directly in the beam of medium power
lasers with little or no attenuation because only a small part of the beam is
impinging on the detector element at any one time. Most of the time the
scanning drum is reflecting the beam away from the detector.

However, mechanical scanning methods work only on CW lasers, not
on pulsed lasers. Also they have a limited number of axes for measurement,
usually two, and integrate the beam along those axes. Thus they do not give
detailed information about the structure of the beam perpendicular to the
direction of travel of the edge. However, there are rotating drum systems
with knife-edges on seven different axes, which then provides multiple axis
cuts to the beam. This can assist somewhat in obtaining more detailed
information about the beam along the various axes. These beam profile
instruments are adaptable for work in the visible, UV, and infrared by
using different types of single element detectors for the sensor. In addition,
software has been developed which provides illuminating beam profile dis-
plays, as well as fairly detailed quantitative measurements from the scanning
system. This software now exists in the PC-based Windows operating system
for easy use.

Figure 10a illustrates a commercial version of the knife-edge scanning
slit beam profiling instrument. Figure 10b shows a typical Windows com-
puter readout. Even though Fig. 10b shows a 3D representation from a two-
axis scanning system, it could be misleading, since it does not really give
information about the structure off-axis. Figure 10c illustrates a typical
mechanical diagram of a scanning slit beam profiler.
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Figure 10 (a) Scanning knife-edge beam profiler; (b) Windows readout of scanning
knife-edge system; (c) Mechanical diagram of scanning slit or knife-edge beam profiler.
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Figure 10 (Continued)

Figure 11a is a photograph of a seven-axis scanning blade system. Figure
11b illustrates a typical Windows readout from this seven-axis system. The
mechanical layout of the multi-axis profiler is similar to Fig. 10c except that
knife-edge apertures are used, and the angles of the knife-edges are varied so
that the beam is scanned across multiple axes.

A variation of the rotating drum system includes a lens mounted in
front of the drum (20). The lens is mounted on a moving axis, and thus
focuses the beam to the detector at the rear side of the drum. By moving the
lens in the beam, a series of measurements can be made by the single element
detector that enables calculation of M>. (A more detailed discussion of M>
will be provided in a later section.) A photograph of this M> measuring
instrument and readout is given in Fig. 12a. A mechanical layout of the
instrument is shown in Fig. 12b.

Another mechanical scanning system consists of a rotating needle that
is placed directly in the beam. This needle has a small opening allowing a
very small portion of the beam to enter the needle. A 45° mirror at the
bottom of the needle reflects the sampled part of the beam to a single-
element detector. The needle is both rotated in the beam, and axially
moved in and out of the beam to sample it in a complete two-dimensional
manner. The advantage of a rotating needle system is that it can be placed
directly in the beam of high-power industrial lasers, both Nd:YAG and
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Figure11 (a) Seven-axis knife-edge instrument; (b) typical readout from seven-axis
system.
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Figure 12 (a) M’ measuring instrument and readout; (b) Mechanical diagram of
M? measuring instrument.
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Figure13 Highly structured laser beam measured with a CCD camera and shown
in both 2D and 3D views.
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CO,. It introduces a very small distortion in the beam, and so can be used in
the beam while on-line. In addition, the translation of the needle can be
made extremely small for focused spots, or large for unfocused beams. It
has, however, some characteristics of the rotating drum mentioned above.
Specifically, it is not very useful for pulsed lasers because of the synchroni-
zation problem between the position of the needle and the timing of the laser
pulse. These rotating needle systems also have extensive computer proces-
sing of the signal with beam displays and quantitative calculations in
Windows-based systems.

2. Camera-based Systems

Cameras are used to provide simultaneous, whole two-dimensional laser
beam measurements. They work with both pulsed and CW lasers. There
are silicon-based cameras that operate in the UV region to the near IR at
1.1 um, which are useful with a great majority of lasers. In addition, there
are other types of cameras that operate in the X-ray and UV regions, and
other cameras that cover the infrared from 1.1 um to greater then 400 um. A
drawback of cameras is that the resolution is limited to approximately the
size of the pixels. In CCD cameras this is roughly 10 pm, and for most
infrared cameras the size is somewhat larger. However, a focused spot can
be re-imaged with lenses to provide a larger waist for viewing on the camera,
which provides a resolution down to approximately 1 pm. Again the resolu-
tion for the camera system is limited by diffraction in the optics. Cameras
have been interfaced to digitizers to connect the signal into a computer.
Current computer software provides very illuminating two- and thre-dimen-
sional beam displays as shown in Fig. 13. They also provide very sophisti-
cated numerical analysis on the beam profile. A drawback of camera-based
systems is that the cameras are extremely sensitive relative to the energy in
laser beams. Thus nearly all lasers must be significantly attenuated before
the cameras can be used for beam profile analysis.

IV. CAMERA-BASED INSTRUMENT DESCRIPTION

Complete instrumentation for a camera-based beam profiling system
includes a modern computer, a framegrabber card to digitize the signal,
and software for controlling the framegrabber card, displaying beam pro-
files and making quantitative calculations. A camera such as a CCD is used
for the visible, or a pyroelectric or other camera is used for other wave-
lengths. Attenuation is almost always needed to either split off part of the
beam, or at least attenuate the beam before going into the camera. Often the
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beam is either too large or too small, and beam sizing optics or other
techniques must be used to size the beam for the camera.

A. Computers

The computer used with beam profilers is now typically an advanced
Pentium II IBM PC type with Windows 95, 98, or NT operating system.
These Pentium II computers with processor speeds, at this writing, of up to
400 MHz, are so fast that a 512X480 pixel beam profile can now be dis-
played at the camera frame rate of 30 Hz. Just a few years ago, in 1996 when
100 MHz Pentium computers were the state of the art, a 128X120 beam
profile could barely be displayed at 10 Hz. Thus modern computers becom-
ing much faster and more powerful are having a significant impact on the
performance of laser beam analyzers, especially in terms of being able to
provide real-time displays.

The performance of these Pentium computers is enhanced by the
modern PCI bus, in which the framegrabber is typically installed. In addi-
tion, the very large capacity of random access memory in excess of 32 or
64 MB assists the computer in rapid beam analysis processing. Very large
hard disks in excess of 1 GB enable storage of high-resolution profiles, in
large quantities, for analysis of time variation in lasers.

B. Frame Grabbers

The frame grabber is an analog to digital converter, normally placed inside
the computer, which digitizes the signal from the camera, and presents it to
the computer for signal processing. There are many brands of commercial
framegrabbers available that have characteristics that are useful for beam
profile analysis.

However, measuring parameters of a laser beam presents many unique
challenges that do not exist in measuring parameters of other items such as
are common in machine vision. As Tom Johnston of Coherent once said,
“Measuring the width of a laser beam is like trying to measure the size of a
cotton ball with a caliper.” This difficulty in measuring laser beam width
comes from the fact that laser beams never cut off at the baseline to zero, but
almost always have energy that extends out into the wings. Thus processing
of very low-level signals becomes critical in measurement of laser beams.
Therefore it is essential that the framegrabber used for beam profile analysis
has the capability for very accurate baseline adjustments, and the capability
for special processing of the noise in the baseline of the camera. The section
on quantitative measurements discusses the details of accurate baseline con-
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trol, and sophisticated noise processing in order to make accurate beam
profile measurements.

C. Beam Analysis Software

Laser beam analysis software now typically runs on Windows 95, 98, and
NT. It provides extremely sophisticated signal processing, very detailed
views of the laser beam, and highly accurate quantitative beam profile mea-
surements. This software also must control the framegrabber and be able to
control the baseline and noise of the signal coming into the framegrabber as
described in the above paragraph. In addition to providing beam displays
and calculations, software also provides the capability for versatile file and
data transfer and management, either to the hard disk or to other compu-
ters, as a means of logging the laser beam characteristics. The capabilities of
the software for very intuitive beam profile displays is given in more detail in
Sec. V, and the quantitative calculations made by the software are provided
in Sec. VL.

D. Cameras Used in Beam Profile Measurement

There are currently many types of cameras that are used in beam profile
analysis. Each of these has advantages and disadvantages for various appli-
cations. The most common type of camera used for laser beam diagnostics
incorporates a silicon-based sensor. These cameras consist of two types,
charge injection devices, CID, and charge coupled devices, CCD. Silicon-
based cameras cover the wavelength range from 190 nm to 1.1 um when the
normal glass window is removed, which would otherwise attenuate the UV.
These cameras are fairly inexpensive, and since they cover the visible region,
which includes many lasers, they are the most common cameras used. At
slightly longer wavelengths lead sulfide vidicon tubes cover the region from
the visible to 2.2 um. Also a new solid state camera, InGaAs, covers the
range from visible to about 2 um. The most common cameras for infrared
lasers of wavelengths longer than 1 pm are pyroelectric solid state cameras.
These are fairly low resolution at 124 x 124 pixels and 100 pm elements, but
cover the wavelength range all the way from 1 pm to beyond 400 um, as well
as work in the UV range from 190nm to 350 nm. Formerly pyroelectric
vidicon tubes were used for the visible to 12 um range. However, their
characteristics were never very satisfactory, and they are now seldom used
for laser beam profiling. Finally, there are many cooled infrared cameras
that can be used for the wavelength range from 1 um to about 12 pm. These
are discussed in the concluding paragraph of the next section.
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1. Characteristics of Cameras

One of the initial camera technologies used for beam profile analysis was a
charge injection device, CID. CID cameras are very versatile in that they
have an X/Y readout rather than a sequential readout, and can thus be
programmed to read out only a part of the camera matrix. This enables
them to operate at high frame rates. In addition, CID cameras are being
coated with phosphors that make them especially sensitive for UV radiation,
and even X-ray radiation. The drawback of CID cameras is that it is difficult
to synchronize the readout of the camera with the triggering of a pulsed
laser. If the laser can be triggered from the camera, then it’s a simple matter.
But if the laser is free running, then distortion of the beam can occur if the
laser pulse does not arrive at the optimum part of the scan cycle of the
camera.

CCD cameras are the most common type of cameras used in beam
profile analysis. Because they are used so extensively, a more detailed ana-
lysis of CCD cameras is provided in the paragraphs below. In addition to
standard CCD cameras, there are CCD cameras with coolers attached to the
sensor. This significantly reduces the noise of the CCD camera, and allows it
a much greater signal-to-noise ratio in measuring laser beams. A typical
uncooled CCD has about an 8-bit dynamic range, whereas cooled CCDs
can be obtained with 10-, 12-, and even 16-bit signal-to-noise ratio.
However, these cooled CCDs are a factor of 5-20 times more expensive
than uncooled CCDs.

Lead sulfide vidicon cameras, PbS—PbO, are commonly used with near
infrared lasers from 1 um to 2.2 um. The advantage of these vidicon tubes is
that they are relatively inexpensive, for coverage at this wavelength range
where silicon-based CID and CCD cameras do not function. One drawback
of these vidicon cameras is that they have a long image lag of up to 1s, and
thus cannot be effectively used to track pulses occurring at faster than 1 Hz.
In addition, they typically have a very high offset shading which reduces the
dynamic range when it corrected by background subtraction.

Pyroelectric vidicons have been in existence for many years, and have
been used for beam profile analysis, particularly of CO, lasers. They have
the advantage of providing relatively high resolution for a CO, beam in the
far infrared at 10.6 pm. However, they have many of the disadvantages of
lead sulfide vidicons, in that they have a slight image lag in the readout,
some nonlinearity, and some baseline shading.

Solid-state pyroelectric arrays have been provided for many years.
Recently high-resolution models have become available. Because these
cameras, as with CCD cameras, are commonly used in beam profile
analysis, more details will be given in a later paragraph.
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A new camera that is particularly useful for beam profile analysis of
lasers in the 1-2 pm region are solid-state InGaAs. These cameras have the
advantage of being solid state, and thus do not suffer from the problems of
vidicon tube cameras. Probably their only drawback is that they are rela-
tively expensive compared to CCD cameras, although they are in the same
price range as the solid-state pyroelectric cameras mentioned in the preced-
ing paragraph.

Another type of solid-state camera useful for far infrared is a camera
containing an infrared bolometer array. These infrared bolometers are
designed primarily to operate in the 812 pm range for thermal imaging,
but nevertheless could be useful for long-wavelength laser beam analysis. In
addition to infrared bolometers there is an infrared ferroelectric type of
camera. This camera is designed for thermal imaging in the 8-12 pm region,
but potentially useful for laser beam analysis. Both of these cameras provide
higher spatial resolution than the solid-state pyroelectric camera mentioned
above. However, the technology is still being developed to make them suffi-
ciently stable to make accurate laser beam profile measurements.

Finally, there are cooled infrared cameras that could be used for laser
beam analysis. This includes cameras made from material such as indium
antimonide, InSb, and mercury cadmium telluride, HgCdTe. These cooled
infrared cameras, however, require significantly more cooling than cooled
CCDs, and typically use liquid nitrogen as the cooling mechanism. In addi-
tion, they are extremely expensive, costing between 20 and 50 times as much
as CCD cameras, and 2-3 times as much as solid-state pyroelectric cameras.
Another drawback of these cooled IR cameras is that they are made for
thermal imaging, and thus are extremely sensitive. This requires additional
attenuation over and above what would be required for uncooled, solid-
state pyroelectric cameras.

2. Characteristics of Cameras Relevant to Beam Profile Analysis

There are a number of characteristics to evaluate in choosing one camera
over another, or in specifying a given type of camera. The most significant
characteristic is the wavelength response of the camera. This was alluded to
in the section above. For example, CCD and CID cameras are the most
useful cameras in the visible and near IR wavelength. A second essential
factor is that the sensor on the camera be windowless to eliminate interfer-
ence fringes between the two surfaces. Alternatively, if a window is required,
then the window should be configured to minimize these interference effects.
This can either be done by AR coating the window for the wavelength of
use, or by making the window a bulk absorbing ND filter, which attenuates
the reflection from the second surface going back and interfering with the
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incoming irradiation of the first surface. The dynamic range of the camera is
another factor for serious consideration. This subject is discussed in more
detail when describing the CCD and pyroelectric cameras below.

Another useful feature to consider in choosing a camera is that some
CCD cameras have electronic shutters. This enables the CCD to integrate
only during a short time, for example, 1/1000s. This enables the camera to
select a single laser pulse out of a kiloherz pulse train, and display that single
pulse. Integration is another useful feature, just the opposite of shutters,
which enables very low light level signal to be accumulated on the camera,
and obtain a higher signal-to-noise ratio.

The scan rate of the camera should be considered. In the US the
standard for driving monitors is RS-170 at 60 Hz. In Europe and most of
the rest of the world, the standard is CCIR for 50 Hz operation. Neither of
these factors is very significant in measuring beam profiles because the
framegrabber card is not affected by whether it is running at the US
60 Hz environment or the CCIR 50 Hz environment. However, if the camera
is also going to be used for direct display on a monitor, then users should
choose the type of camera for the part of the world in which they live.

Another factor that a user should be aware of, is that in nearly all
cameras a single frame of the camera output, at say 30 Hz in the US, consists
of two fields that are interlaced together. The two fields are provided at
twice the frame rate. In some cameras these fields can be combined together
for pulsed lasers, whereas in others, only one field of the camera is active
during a single laser pulse.

Fill factor should be considered in the choice of a camera. Normally
CCD and most other cameras have a relatively high fill factor, and thus do
not lose signal in between the active parts of the pixel.

Shading can be a serious factor in some cameras. Shading is defined as
a non-flat baseline offset. This means, for example, that a center region of
the camera could have an offset of 1 or 2 digital counts out of 256, whereas
perhaps one edge of the camera could have a baseline offset of as much as 5—
10 counts. Even more seriously, some vidicon tube cameras have shading all
the way around the edges, sometimes as much as 50 counts higher offset
than the baseline offset in the center of the camera. Most CCD cameras have
very little shading, but do have enough that it needs attention in terms of
signal processing.

As mentioned above, image lag can be a serious problem with vidicon
type cameras. Nearly all solid-state cameras completely read out the signal
during each frame, and thus have no image lag.

Linearity of the camera output is another factor to be considered.
Most solid-state cameras have nonlinearity of less than 1% over the speci-
fied dynamic range of the camera, which enables accurate profile measure-
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ments. Lead sulfide vidicons are nonlinear, but have a typically known
gamma. The gamma factor means that for a given change in the input signal
magnitude there is not a proportional change in the output magnitude. If
the gamma is 1, then the output is linear relative to the input. However,
many vidicons have a typical gamma of 0.6, meaning that for a 10 times
increase in input signal, for example, only a 6 times increase in the voltage
output would occur. Beam profile software and hardware correct for this
gamma, and convert the nonlinear signal from the vidicon into a linear
signal.

A useful feature of some cameras is that they can be triggered exter-
nally. This enables a trigger pulse from the laser to synchronize the camera
to the laser. A more common feature is that the camera is free running, and
synchronization must be obtained by triggering the laser from the camera.
When this is impossible, and the laser and camera run asynchronously, the
user takes a slight chance that the camera will be in a reset mode when the
laser pulse arrives. However, this typically occurs less than 1% of the time
with most CCD type cameras.

The sensitivity of the relative types of cameras is another consideration
because of laser attenuation needed. Almost all of the silicon-based cameras,
such as CCD, CID, etc. have very similar sensitivity. The solid-state
uncooled pyroelectric cameras are about six orders of magnitude less sensi-
tive than CCDs, and thus require less attenuation than CCD cameras. Many
of the other cameras mentioned under Sec. IV.D.1 ‘“Characteristics of
Cameras” have sensitivity somewhere between the solid-state pyroelectric
and the CCD cameras, and thus the attenuation requirement falls some-
where between these two.

3. CCD Type Cameras

CCD cameras are the most common type of cameras used in beam profile
analysis. There are very inexpensive CCDs typically used in camcorder and
consumer type applications. These CCDs typically have a very large propor-
tion of bad pixels, as well as a poor signal-to-noise ratio, and thus are not
very suitable for laser beam profile analysis. Industrial grade CCD cameras
have fewer bad pixels, and the electronics in the camera are typically
designed to mask any bad pixels that do exist, which makes it easier for
beam analysis software to process the signal.

The specifications given by the manufacturers for the signal-to-noise
ratio of CCD cameras must be understood in order to properly measure
laser beams. A typical specification is a signal-to-noise ratio of 50-60 db.
This specification is arrived at by dividing the saturated signal level by
the RMS noise. Thus 50-60db implies a signal-to-noise ratio of 300—
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1000. However, the RMS noise of a camera is equivalent to only one
standard deviation, with significant noise peaks out to three standard
deviations. When you consider both positive and negative noise transi-
tions, the peak-to-peak noise becomes six times the RMS. Thus a CCD
camera with a specification of 50-60 db signal-to-noise ratio typically has
a peak to peak signal-to-noise ratio of only about 50 to 180. Thus 8-bit
digitizers with 256 counts of resolution have typically been sufficient
framegrabbers for beam analysis. It may be noted that with a 256
count digitizer, and a 50-180 signal-to-noise ratio, the bottom 2—6 counts
from the digitizer will be noisy. There are cases when a 10- or 12-bit
digitizer can provide an advantage over 8 bits, in beam profile analysis,
in that the noise of the cameras is thus divided into smaller increments.
This enables the software to provide signal summing and averaging to a
greater accuracy in order to improve the signal-to-noise ratio from the
beam profile measurement.

There are basically two types of CCD camera technology currently in
use. One is called frame transfer, and the other is called interline transfer. In
frame transfer cameras there is only one sensor site for both fields of the
signal frame. Thus on a pulsed laser, since there is only one cell, this cell is
read out during the first field, and no signal remains for the second field.
Thus frame transfer cameras have only one half the resolution for pulsed
lasers that they do for CW lasers. Some frame transfer CCD cameras have
been shown to have signal response beyond the normal 1.1 um cutoff of
silicon sensors, out to 1.3 um, even though the sensitivity is typically 1000
times less than it is at 0.9 um. This slightly reduces the dynamic range of the
camera when used in this wavelength range.

Interline transfer sensors have individual pixels for each field of the
camera frame. Thus they maintain twice the resolution of frame transfer
cameras with pulsed lasers. An interline transfer camera can pick out a
single pulse from pulse rates up to 10 kHz with a 1/10000 s shutter speed.
Interline transfer cameras typically have higher speed shutters than with
frame transfer cameras. However, a problem exists with interline transfer
cameras in that the readout electronics are typically on the rear of the
silicon wafer behind the sensor cells. For infrared lasers with wavelengths
approaching 1.06 um, the absorption of all the radiation does not occur
in the sensor cells on the front, and some of the radiation is absorbed in
the transfer electronics on the rear of the cell. This absorption of radia-
tion creates a ghost image in the beam, which distorts the view of the
beam profile. Even more significantly, it greatly distorts measurements on
the beam, since this ghost image appears as a low-level energy in the
wings of the beam. Thus interline transfer cameras are recommended for
pulsed lasers wherein the wavelength is less than 1pum. Frame transfer
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cameras are recommended for YAG lasers at 1.06 um, even though
on pulsed lasers they have only half the resolution as interline transfer
cameras.

4. Pyroelectric Solid State Cameras

Pyroelectric solid-state cameras (21) have been developed that cover the
wavelength range from 1.1 um to greater than 400 um. These cameras are
solid state with a very reliable and linear output. They have a flat baseline
with no excessive shading and no image lag (as is present in pyroelectric and
PbO-PbS vidicon tubes). Also, pyroelectric cameras interface to computers
and software much as do CCD cameras, and provide the same viewing and
numerical capability. However, pyroelectric cameras have a lower resolution
of 100 pm per pixel, and only a 124 x 124 matrix. Figure 14 shows a pyro-
electric camera with the output of a CO, laser displayed on a VGA monitor,
provided directly from the camera microprocessor.

Pyroelectric solid-state cameras work well with pulsed laser radiation.
However, it is necessary that the camera be triggered from the laser to
synchronize the scanning. The reason for this is that the pyroelectric sensor
is a thermal sensor, and after the signal is read out from the heating radia-

Figure 14 Pyroelectric camera and readout onto a VGA monitor.
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tion pulse, the heated area of the sensor cools and generates a signal of the
opposite polarity. It is necessary to read out this negative polarity signal and
reset the sensor before the next laser pulse. This is done by having the
camera sense a short series of pulses, calculate the interval between pulses,
and then adjust the resetting scan to occur just before the next laser pulse.
Depending on the pulse rate of the laser, whether it be single shot, very low
frequency below 5 Hz, intermediate frequency between 5 and 50 Hz, or high
frequency between 50 Hz and 1kHz, this resetting operation is performed
differently in the pyroelectric camera.

For CW operation the sensor must be mechanically chopped to pro-
vide an alternating heating and cooling cycle. This typically is done with a
50% duty cycle between heating and cooling, and is normally performed by
a rotating chopper blade. The chopper blade is usually incorporated into the
camera such that the blade crosses the camera sensor from top to bottom.
The camera readout is then triggered to read out each row from the camera
just as the blade crosses that row of pixels. In this manner every row of
pixels in the pyroelectric sensor has the same integration time, is read out
immediately after being covered or uncovered, and thus gives optimum
uniformity of the signal. If chopping synchronization is not performed
properly, the pyroelectric sensor can give a very distorted output signal.

Because the pyroelectric sensor is a thermal device, there is some dis-
tortion that occurs from thermal and electrical crosstalk. Thermal crosstalk
occurs when some heat spreads from one element into adjacent elements.
This is minimized by either chopping at a relatively high frequency, and with
pulsed lasers by resetting the array just prior to an incoming laser pulse.
With chopped radiation the maximum distortion occurs in the corners of the
array, because the chopper blade is not parallel to the row on the top and
bottom edges. Even so, the non-uniformity in the corners is only about 5%.
At the same time, the linearity and uniformity of the corner areas usually
has the least impact on measuring a beam. There is some distortion from
electrical crosstalk coupling between pyroelectric detector elements.
However, with high-resolution elements in current pyroelectric solid-state
arrays, this electrical crosstalk is typically less than 5%. Since laser beams
do not typically have very sharp irradiance changes from one element to the
next, this crosstalk is seldom a problem in obtaining relatively accurate
analysis of the structure in a laser beam.

E. Laser Beam Attenuation

Laser beam profile measurements are made on lasers that vary from less
than 1 mW to greater than 10 kW average power. This typically corresponds
to a power density of less than 10~! W/ecm? to greater than 10° W/cm?. A
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CCD camera typically saturates at a power density in the range of 107’ W/
cm?. Solid state pyroelectric cameras typically saturate at approximately
1 W/cm?. Thus the necessary attenuation arranged for CCD cameras varies
from 10° to 10'2. For pyroelectric cameras the attenuation range is a little
more modest at about 10*. This laser beam attenuation is usually performed
by one of two methods. The first is using a beam splitter to pick off a small
percentage of a beam, allowing the main part to pass through the beam
splitter. The second method is inline attenuation in which the beam is
reduced in power by the absorption of neutral density filters.

1. Beam Pickoff

The first step in attenuating a high-power laser beam is to pick off or sample
a small percentage of the beam from the main beam, without affecting the
beam profile of the sampled beam. There are basically three ways to perform
this pickoff. The most common is to have a beam splitter that is mostly
transmitting and partially reflecting. The beam splitter is typically put in the
beam at 45°, so that a small percentage of the beam is reflected at 90° to the
incident beam. However, this beam sampling surface can be placed at
any angle, and there is an advantage to placing the pickoff surface nearly
perpendicular to the beam so that the reflection becomes less polarization
sensitive.

The other type of pickoff is to use a mostly reflecting and partially
transmitting surface. In this case the surface is placed in the beam at an
angle to reflect the majority of the beam, and then transmit a small part
through the surface to be measured by the beam analyzer.

A third method of beam pickoff is to use a diffraction grating. This can
either be a reflecting or a transmitting type. In the transmitting type of
diffraction grating the beam is typically incident upon the grating perpendi-
cular to the surface, and most of the beam passes directly through the
diffraction grating. However, a small percentage of the beam is transmitted
at an angle offset from the output angle of the main pass through beam. The
portion diffracted typically has multiple modes, whereas for example, 1% of
the beam may transmit at, for example, 15° from the emitting main beam.
Second-order diffraction may be 0.01% at 30°, and even a third-order beam
may be 107% of the input beam at 45°. The angle and the diffraction percent
depend upon the manufacturing characteristics of the diffraction grating, as
well as the wavelength of the beam incident upon the grating.

A reflection type of diffraction grating works in a similar manner,
except that the beam incident on the diffraction grating is at an angle
other than perpendicular. For example, instead of at 90° to the plane of
the grating, it may be 30° from normal incidence. The main reflected beam is
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then reflected at 30° from normal incidence in the opposite direction. Now
the first-order, second-order, third-order beams are reflected at angles other
than the angle of the main reflection. As in the case of the transmitted
reflection beam, these refracted and attenuated beams may be 5°, 10°, or
15° away from the main reflected beam, and are typically 1%, 0.01%, or
107 of the main beam, etc. The diffracted low-intensity beam maintains all
of the beam profile characteristics of the main beam. This small intensity
beam can then be used for beam analysis.

The most commonly used beam pickoff surface is quartz, usually used
at a 45° angle to the incoming beam. If the quartz is not AR coated, it
reflects an average of 4% of the beam per surface. However, at 45° the
quartz becomes polarization sensitive, and one polarization is reflected at
about 2%, and the other can be as high as 8-10%. Thus the reflected sample
beam does not truly represent the incoming laser beam. This problem can be
solved by placing a second quartz surface in the path of the initially sampled
beam, but angled in a perpendicular plane that reflects the two polarizations
in the opposite way to the first surface. (That is, the first surface may reflect
the beam 90° in the horizontal, and the second surface reflects 90° in the
vertical.) After two such reflections the sampled beam once again has the
same characteristics as the initial beam.

The quartz sampling plates have two configurations. One is a wedge,
so that the back surface of the quartz reflects at a different angle than the
front surface, and keeps the beams from the two surfaces from interfering
from each other. The other configuration uses a very thick, flat quartz plate
such that the reflection from the back surface is displaced sufficiently far
from the front surface reflection, that it does not overlap. Flat pickoffs have
the advantage that the throughput beam, while being slightly displaced in
position from the input beam, exits the quartz flat at the same angle as the
entrance, and is not distorted. Figure 15a shows a commercially available
quartz reflecting device using a thick flat as the reflector. The mechanical
layout is shown in Fig. 15b. With the wedge, the exit beam is displaced in
position and angle, as well as being slightly elongated. Thus if a beam pick-
off were to be used in process and left permanently in place, then the flat
would have superior characteristics to a wedge. Figure 16a shows a com-
mercially available attenuation device using a wedge as the reflecting
mechanism. Figure 16b shows the mechanical layout of the device, with
indents for mounting the wedge on the right side and slots for ND filters
on the left side. For infrared lasers ZnSe commonly replaces the quartz as
the reflecting material. ZnSe can be AR coated for the specific wavelength of
interest, and achieve reflection lower than 1% per surface.

An advantage of reflecting gratings is that they can be made from
metal, and then the rear cooled with water to enable them to withstand
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Figure 15 (a) Beam cube reflecting beam splitter; (b) mechanical layout of beam
cube.

very high powers. Some gratings are of a transmitting type, either from
quartz for visible radiation, or from ZnSe for infrared radiation, and have
the advantage that the main beam continues along the same path as its
entrance.

Sometimes a thin pellicle, of 10-50 um thick, is used for a beam sam-
pler. This is so that the rear reflection is so close to the front side that the
interference effects can sometimes be negligible. However, a pellicle as thin
as 10 um can still cause interference fringes that could be seen with a 10 um
pixel camera.
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Figure 16 (a) Combined beam splitter and ND filter holder; (b) mechanical dia-
gram of combined beam splitter and ND filter holder.

Finally, for industrial Nd:YAG lasers a good pickoff scheme is the use
of the dichroic mirror that is normally employed as a turning mirror for the
laser. This dichroic mirror is typically made of quartz or fused silica with an
AR coating and placed at 45° to reflect nearly the entire 1.06 pm beam at 90°
from the input. The dichroic mirror is configured so that visible light passes
through the filter, so an operator can either see through the filter to the
work surface, or a camera can be mounted behind the filter to monitor the
industrial process being performed. These dichroic filters transmit a small
percentage of the YAG laser beam directly through the filter, so that it is
used as a sampling mechanism. Dichroic filters used in this manner are also
very polarization sensitive, and so once again, two filters must be placed
at 90° to each other in order to obtain a true representation of the input
beam.

2. In-line Attenuation

There are a number of methods of further attenuating a laser beam once
reflection has reduced the power or energy low enough that it does not
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damage the in-line attenuators. One type of in-line attenuators consists of
glass or quartz with a broad band neutral density reflecting surface coating.
When these neutral density filters are made of quartz, they are particularly
useful for ultraviolet radiation. However, when the multiple surface reflect-
ing neutral density filters are used in conjunction with each other, there is
the danger of causing interference between the multiple surfaces. This inter-
ference can cause interference fringes, which completely distort the ability to
measure the beam profile. This problem can be somewhat alleviated by
tilting the filters so that the reflected beam bounces away from the camera
sensor.

Another type of surface-reflecting ND filter consists of circular vari-
able filters, in which the attenuation varies around the surface of a circular
disk. This type of filter is very useful for single-element detectors, but is not
very useful for beam profilers, in that the attenuation is continuously vary-
ing, and therefore will attenuate one side of the beam more than the other.

The more common in-line attenuation filters for beam profile ana-
lysis consist of bulk absorbing neutral density filters. Bulk absorbing
filters are usually made of BK7 glass impregnated with an absorbing
material. The range of attenuation achievable with these filters varies
from a neutral density, ND, of 0.1 to an ND of greater than 4. The ND
number is defined by

ND = log(1/T) (1)

where 7 is the transmission ratio of output divided by input.

Since the absorption is within the material, there is very little danger of
reflection from one surface bouncing back and interfering with the reflection
from the other surface. Nevertheless, when two filters are stacked together,
the back surface of one, and the front surface of the next, need to be slightly
angled so that interference does not occur in this region where there is no
attenuation between the surfaces. Bulk absorbing filters are very useful for
the entire visible and near infrared. However, they cut off at about 350 nm in
the UV, and are not useful for excimer lasers. They also begin to change
their attenuation characteristics at 1 um in the infrared, and then cut off
completely between 2 and 2.5 um.

Bulk absorbing ND filters are commercially available in a number of
forms. One common form is simply a flat plate, 2 inches (50 mm) square,
which can be stacked one after another in any mechanism to hold them in
place. Figure 16 shows 2 inch square ND filter flat plates used to attenuate
the beam. This same instrument could also accommodate surface reflecting
filters for the UV. A second commercially available type is to have indivi-
dual round filters mounted on a wheel so that the wheel can be turned,
enabling the user to change attenuation simply by rotating the wheel.
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Often these wheels can be stacked one behind another, so that multiple ND
filters can be selected. Typical filters have an attenuation range between 0
and 107'°. Figure 17 shows a commercially available rotating wheel neutral
density filter set.

A third type of bulk absorbing ND filter consists of two filters made in
the form of wedges. An individual wedge would be like a circular variable
filter, and attenuate more on one side than another. However, an opposing
wedge is placed behind the first wedge, and the entire beam passes through
the same amount of attenuating material. These wedges enable a user to
make continuous changes in attenuation in small increments, which can be
very convenient. However, in some instances beam distortion has been
observed from these filters.

None of the in-line filters discussed thus far are useful for infrared
lasers beyond 2 um. It turns out that for CO, lasers, the use of CaF, flats
is very useful. A 1 mm thick CaF, plate absorbs roughly 50% of 10.6 pm
radiation impinging upon it. Thus by stacking CaF, flats, CO, lasers can be

Figure 17 Rotating wheel ND filter set.
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attenuated so that the signal is reduced in fine increments to within the range
of the infrared camera.

Crossed polarizers are popular for in-line attenuation of laser beams.
However, it would be difficult to assure that the cross polarizers are attenu-
ating each polarization of the beam identically. Therefore, they are not
commonly used in beam profile analysis, even though they work very well
to attenuate beams for single-element power measurement.

Finally, the last method of attenuating a laser beam is to allow the beam
to impinge upon a scattering surface. The beam must first be attenuated by
beam sampling, so it does not burn or damage the scattering surface. Once the
beam impinges upon the scattering surface, the camera can use a lens to image
the reflection of this surface. The image reflection is typically very representa-
tive of the beam profile. A problem that can exist is that speckle always occurs
from scattering surfaces. Speckle is a situation in which the roughness of the
scattering causes interference to create both bright and dark spots in the image
reflection. Having the scattering surface move at a rate faster than the camera
integration frame rate can solve this problem. There exists a commercial pro-
duct called a ““speckle eater,”” which is simply a scattering surface mounted to a
small vibrating motor. An advantage of imaging scattered beam reflection is
that the iris in the camera lens can be used for attenuation to achieve a fine
degree of beam irradiance reduction.

F. Beam Size

Laser beams typically vary from I mm in beam width to 40 mm, and in
many applications, much larger. Focused laser beam spots can be as small
as 1 um in width. Since camera pixels, at the smallest, are approximately
8 um, cameras are not very useful for measuring focused spots. In addition,
typical commercial grade cameras have an overall sensitive area of roughly
6 mm, with 10 mm being the size of 1000 x 1000 large area CCD cameras.
Thus there are many cases when the beam is much too small to be measured
with the camera pixels, and other cases when the beam is much too large to
fit onto the camera sensor.

When the beam is too small for the pixels on a camera system, one of
the most straightforward solutions is to use one of the mechanical scanning
devices instead. Both the rotating drum and the rotating needle systems can
measure small beams. However, these systems are still plagued with the
problem that they do not work with pulsed lasers, and do not give instan-
taneous whole beam analysis.

A second solution that is used especially when looking at a laser
emitter such as a laser diode is to use a microscope objective and focus
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Figure 18 (a) Focused laser diode beam shown at a 4x computer magnification

and (b) 16 x magnification.
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the camera onto the emitter surface. This images the laser output aperture
on the array.

An indirect method of measuring a small focused spot is to allow the
beam to go through focus, then use another lens to collimate the beam. A
third lens with a long focal length then refocusews the beam to a much
larger waist that can be resolved by the camera pixels. If the beam is not
a tightly focused spot, but rather a long waist, then a beam expander can
perform the same function to increase the size of the beam. Finally, a small
focused spot can be scattered from either a reflecting or transmitting surface,
and imaged with a camera lens. Difficulty with this technique is that if the
spot is very small, it is difficult to obtain scattering surfaces with structure
small enough to accurately scatter the beam, rather than simply reflect off
one of the facets of the scattering surface. Magnification of the beam can
also be achieved in the computer, however at the loss of resolution. An
example of the magnification capability in the computer software is
shown in Fig. 18.

When the beam is too large for the camera, the first solution is to use a
beam expander in reverse. A beam expander can typically give beam reduc-
tions in the order of 10 to 1. Thus a 5cm beam could be reduced to 5Smm,
which would fit nicely on a CCD camera. A second method with large
beams is to use large area sensors. This is limited to approximately 1cm?
for silicon type sensors.

Finally, the most common method of viewing very large beams is to
reflect the beam from a scattering surface and image the beam with a lens. A
scale can be used to calibrate the pixel pitch of the lens/camera system. This
is the same technique as is used for beam attenuation, but now the primary
purpose is to be able to image a large area beam, rather than attenuate a
large energy. All the same techniques described above must be used to
minimize speckle and other problems.

V. VIEWING BEAM PROFILES

A tremendous amount of information can be gained about the beam profile
simply by being able to clearly see it on a computer screen. Mode structure
and distortion of the beam are immediately recognized. Examples are a
Gaussian beam distorted into an elliptical shape, or the introduction of
spurious multimode beams into the main beam. The beam splitting up
into multiple spots or clipping of the beam on an edge is immediately
seen. In top hat beams an electronic display can show hot and cold
spots in the flat top, as well as distortion in the ideal vertical sides of the
beam.
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A. Two-dimensional Beam Profile Displays

A two-dimensional (2D) view of the beam enables the user to see the entire
beam simultaneously. A false color or a grayscale plot is given which enables
the user to tell intuitively which are the hot and cold spots in the beam.
Cross sections through the beam, set either manually or automatically at
some part of the beam, introduce displays of beam irradiance in the vertical
axis, which help interpret the 2D display. Shown in Fig. 19 is the 2D display
of a beam profile with the cross section vertical displays drawn through the
peak of the beam. The cross section profiles can be drawn at any other part
of the beam as well, or rotated from the X/Y-axis to the major/minor axis
of an elliptical beam.

Sometimes color can have a significant effect in providing intuitive
beam profile information. Other times a grayscale image can show informa-

_¢]Multimode YAG lases

Figure 19 2D Beam profile display with cross section on the X/Y axis.
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Figure 20 2D gray scale beam profile display showing interference fringes from
dust on a neutral density filter used to attenuate the beam.

tion that color does not. Figure 20 shows a 2D beam profile display created
as a grayscale image. Notice the interference rings that show up dramatically
in the shades of gray. If this were in color, one might not even notice the
interference rings. These interference rings are reflections from small specks
of dust on one of the neutral density filters.

B. Three-dimensional Beam Profile Displays

3D views of the beam profile give a higher level of intuition of what the
beam profile really looks like. The user has the option of rotating and tilting
the beam, changing the resolution and color, etc. to maximize his ability to
obtain intuitive information from the beam display. However, while 2D
displays give all the beam profile information simultaneously, 3D displays
hide the rear of the beam. Nevertheless, the 3D view is still often useful in
gaining greater intuition from the beam profile. Shown in Fig. 21 is a 3D
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Figure 21
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beam profile at different angles of rotation, illustrating how the beam looks
from different sides.

There are many view processing features now available that assist in
enhancing the intuition gained from seeing the beam. These include choices
of resolution in the 3D display; that is, the number of lines displayed. Also
adjacent pixel summing and convolution are available to reduce the visual
signal-to-noise ratio, and thus enable a user to more clearly see the major
features of the beam, especially in the presence of noise.

VI. QUANTITATIVE MEASUREMENTS

One of the most important features of modern beam profilers is the ability
to make very accurate measurements of the beam characteristics. Two
important laser characteristics, the wavelength of the laser, and the temporal
pulse width, are unrelated to beam profile measurement; and are easily
measured by instruments other than beam profile measuring instruments.
Nearly all other qualities of a laser beam are related to the beam profile. One
additional measurement that is not measured directly by beam profile
instruments is the total power or energy, which also must be measured by
a separate instrument. However, the total power or energy can be measured
with a power or energy meter at the same time that the sampled beam profile
is measured. When this is done then the beam profiling system can be
calibrated to the total power or energy measurement, and from then on
the beam profiler is able to track the total power or energy, being calibrated
to the power meter reading.

Characteristics of a laser that are directly related to beam profile
measurements include the pulse-to-pulse relative power or energy, as dis-
cussed above, the peak power or energy, the location of the peak, the loca-
tion of the centroid of the power or energy, and the beam width. The beam
width can be measured either on an X/ Y-axis, or for an elliptical beam, can
be measured along the major and minor axis. Each of these characteristics is
discussed below.

A. Relative Beam Power or Energy

Cameras are seldom able to give a direct measurement of the total energy or
power in a laser beam. Two reasons for this are as follows. First, the camera
follows a long chain of attenuation so that it does not see the total beam
directly. Since this attenuation is put in place for the purpose of getting the
energy down to the level of the camera, and can be as much as a factor of
10", it is not practical to calibrate each element of attenuation. Thus the
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absolute power fed to the camera is unknown relative to the total power of
the beam. Secondly, cameras do not have uniform wavelength absorption.
Therefore they would have a different calibration factor for every wave-
length of laser that is used. It would be impractical to attempt to calibrate
the camera as a function of wavelength.

Nevertheless, as described above, a power meter can be used in the
direct beam path to measure the total power while the split off portion is
sent to the camera. After correcting for the power lost to the first beam
splitter, the total energy or power measured by the meter can then be
entered into the software of the beam analysis instruments. From then on
the camera can give a readout of the total power or energy. This is especially
useful because cameras see the entire two- dimensional beam distribution,
and thus give a relative total beam measurement as accurately as the power
meter.

B. Peak Power or Energy

Peak power or energy is a relatively easy measurement that is derived from
the total power. Since the total power on a camera is a summation of the
irradiance on each pixel, it becomes relatively easy to determine what part of
this total power is contained within each pixel, and thus the energy on the
pixel with the highest power is derived in software. This is a useful measure-
ment in that it tells whether there are hot spots in the beam, and what is the
magnitude of these hot spots. This can be particularly useful when the laser
power or energy is approaching the damage threshold of optics through
which the beam must pass. A hot spot in the beam could cause damage
even when power averaged over the area of the beam is well below the
damage threshold.

C. Peak Pixel Location

When the software in the beam analyzer finds the magnitude of the pixel
with the highest irradiance, it can also provide the location of this pixel. This
may be useful to track the stability of the hot spot or peak irradiance, and
determine whether or not this highest irradiance is stable or is moving back
and forth across the beam. The actual peak irradiance location is seldom
useful in telling where the majority of the energy of the beam is located,
however.
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D. Beam Centroid Location

Quite often, more significant than the peak pixel location is the location of
the centroid of the beam. The centroid is defined as the center of mass or
first moment of the laser beam, and is described in Eq. 2:

X:JJXE(x,y,z)dxdy/JJE(x,y,z)dxdy (2a)

Y—JJyE(x,y,z)dxdy/JJE(x,y,z)dxdy (2b)

The centroid of the beam can be more significant than the peak pixel
because it is independent of hot spots in the beam. This is where the energy
center is located. Usually the pointing stability of a beam is measured by
doing statistical analysis on the centroid rather than on the peak pixel. This
pointing stability provides significance in showing the stability of the laser
beam position.

The significance of the beam centroid can be very important in align-
ment of laser beams. This is true in optical trains, on research tables, and
in industrial laser applications where it is important to know that the beam
is positioned correctly in the optics. It is also significant in aligning lenses
to laser diodes to collimate the beam. The beam centroid must also be
accurately known when aligning beams into fiber optics. Many beam-
shaping systems require alignment of the beam, usually the centroid, to
the shaping optics.

E. Beam Width

One of the most fundamental laser profile measurements is the beam width.
It is a measurement of primary significance because it affects many other
beam parameters. For example, the beam width gives the size of the beam at
the point where measured. This can be significant in terms of the size of the
elements that are in the optical train. Measurement of beam width is also
a part of measuring divergence of laser beams, which is significant in pre-
dicting what size the beam will be at some other point in the optical train.
The beam width is critical for the performance of most non-integrating
beam shaping systems. Statistical measurement of the width of the beam
is also a significant factor in determining the stability of the laser output.
Finally, measurement of the beam width is essential in calculating the M? of
the laser. This is an important characteristic of laser beams that will be
discussed later in this section. Even though fundamental and important,
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this beam width is sometimes a very difficult measurement to perform accu-
rately.

1. Considerations in Accurate Beam Width Measurement

A number of considerations in the characteristics of a camera used for beam
profile measurement must be carefully considered and accounted for in
accurately measuring beam width. Among these considerations is the sig-
nal-to-noise ratio, i.e., the magnitude of the beam relative to the background
noise in the camera. The amount of attenuation used for the camera is
usually adjusted to enable the peak pixel in the camera to be as near to
saturation as possible without overdriving the camera. Also if the beam is of
a very small size in a very large field of camera pixels, this may be a very
small amount of signal compared to the random noise of all the pixels.
Proper treatment of this noise is discussed below.

The camera baseline offset is another factor that must be accurately
controlled. Because the energy of a laser does not abruptly go to zero, but
trails off to a width roughly four times the standard deviation, or twice the
1/ ¢* width, there is a lot of low-power energy that must be accounted for in
accurately measuring the width of the beam (22-24). (The proportion of
energy in a Gaussian beam is 68% in +10, 95% in +20, and 99.7% in +30.
Nevertheless, experiments performed by the author have shown that as an
aperture cuts off the beam at less than +40 the measured beam width begins
to decrease.) Correct and incorrect baseline control is illustrated in Figs.
22a, 22b, and 22c. In Fig. 22a the baseline is set too low, and the digitizer
cuts off all the energy in the wings of the beam. The beam is seen to rise out
of a flat, noiseless baseline. This means that without the wings of the laser
beam, a measurement would report a width much too small. In Fig. 22b the
baseline offset is too high, as seen by observing the beam baseline relative to
the small corner defining mark. In this case the software will interpret the
baseline as part of the laser beam. A calculation of beam width will be much
too large. In Fig. 22c the baseline is set precisely at zero. Both positive and
negative noise components are retained out beyond the wings of the beam
where there is no beam energy. The software will interpret the average of the
positive and negative signal as nearly zero.

Because the low power energy in the wings of a laser beam can have a
significant effect on the width measurement, it becomes necessary to be able
to characterize the noise in the wings of the beam. Both the noise compo-
nents that are above and the noise components below the average noise in
the baseline must be considered. The noise below the average baseline will
hereafter be called negative noise.
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Figure 22 Camera baseline set (a) too low, (b) too high, and (c) properly. (Low
baseline shows beam rising out of a flat background, which would cause a beam
width calculation too small. High baseline would cause a beam width measurement
too large.)
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Figure 22 (Continued)

Since the size of the beam measurement is affected by the total amount
of laser beam energy relative to the noise of the camera, it has been
found that software apertures placed around the beam can have a very
strong effect in improving the signal-to-noise ratio. For a non-refracted
beam, an aperture approximately twice the 1 /e2 width of the beam can
be placed around the beam, and all noise outside the aperture can be set
to zero in the calculation. This greatly improves the relative signal-to-noise
ratio when small beams are being measured in a large camera field.
Finally, the measurement algorithm that is used to measure the beam
width can have a notable effect on the accuracy and significance of the
measurement.

2. Beam Width Definitions

There are various traditional definitions of beam width, which may or
may not contribute to knowing what the beam will do when focused or
propagated into space. Some of these include measurements of the width
at some percentace of the peak, full width/half maximum, which would be
50% of peak, a percentage of energy, or the 1/ ¢* width. Software equivalent
knife-edge measurements are also used as means of determining the beam
width. Finally, a more recent definition of beam width is called the second
moment (25).
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The software equivalent knife-edge measurement and the second
moment measurement are becoming the most widely accepted means of
measuring laser beams. Both measurements are independent of holes or
structure within a beam. When the knife-edge measurement is performed
correctly, it does an excellent job of approximating a second moment mea-
surement (26). The knife-edge measurement with a camera is simply a soft-
ware algorithm simulating the motion of an actual moving knife-edge. One
advantage of cameras over actual mechanical scanning knife-edges is that
the software can quickly find the major and minor axis of an elliptical beam,
and perform the knife-edge measurement along these axes without having to
actually reposition the mechanical device.

3. Second Moment Beam Width Measurements

Recent ISO standards (26-29) have defined a second moment beam width,
abbreviated D4o, which, for many cases, gives the most realistic measure of
the actual beam width. The equation for the second moment beam width is
given in Eq. (3). Equation (3) is an integral of the irradiance of the beam
multiplied by the square of the distance from the centroid of the beam, and
then divided by the integrated irradiance of the beam. This equation is called
the second moment because of the analogy to the second moment of
mechanics, and is abbreviated D4c because it is the diameter at +2¢
which is +1/¢* for Gaussian beams. This second moment definition of a
beam width enables a user to accurately predict what will happen to the
beam as it propagates, what is its real divergence, and the size of the spot
when the beam is focused.

Déo, = 4<“(x — X)’E(x,y,2) dxdy/“ E(x,y,2) dxdy)l/z (3a)

Ddo, = 4<“(y Y)Y E(x,y,2) dxdy / “(E(x, 3.2) dxdy)]/z (3b)

where

(x — X) and (y — Y) are the distances to the centroid

coordinates X and Y.

Sometimes there are conditions of laser beams wherein the second
moment measurement is not an appropriate measurement to make. This
is particularly true when there are optical elements in the beam smaller
than twice the 1/¢* width that cause diffraction of part of the energy in
the beam. This diffraction will put energy further out into the wings of
the beam, which when measured by the second moment method, will
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cause a measurement of the beam width much larger than is significant for
the central portion of the beam. By Eq. (3), the (x — X )2 term overempha-
sizes small signals far from the centroid. This requires judgment on the part
of users as to whether or not measurement of this diffracted energy is sig-
nificant for their application. If the diffracted energy, which typically
diverges more rapidly than the central lobe, is not significant, it is possible
to place a physical or software aperture around the main lobe of the beam
and make second moment measurements only within this aperture, and
disregard the energy in the wings. However, if the application is dependent
on the total amount of energy, and it is important to know that part of this
energy is diffracted, then one would want to place this aperture such that it
includes all the beam energy in making the calculation.

Second moment measurement, however, is very difficult to make with
CCD cameras because the high camera noise out in the wings of the beam
ismultiplied by (x — X )2 producing a large error component. Also any offset or
shading of the camera in the wings of the beam causes very large errors because
these small energy numbers are multiplied by (x — X )2. Forexample, Figs. 23a
and 23b illustrate the difficulty of making second moment measurements.
These figures are from theoretical calculations based on creating a perfect
Gaussian beam, adding random noise to the mathematically derived beam,
then using beam width measurement algorithms to calculate the beam size. In
Fig. 23a it is seen that a knife-edge measurement can measure a beam of 64
pixels in a 512 field with only 3% error. However, using second moment
measurement and random camera noise, the beam width error rises to over
60%. For this reason, a few years ago, theoreticians believed that is was not
possible to make an accurate second moment beam width measurement with a
commercial grade CCD camera. However, as shown in Fig. 23b, using a knife-
edge can initially calculate a relatively accurate beam width. Then by placing a
2% software aperture around the beam, the second moment measurement can
make very accurate beam width calculations down to a beam containing as few
as 13 pixels.

In the following comparisons, Figs. 24 to 26, measurements were made to
determine the effect on beam width measurement accuracy of various para-
meters. Since there is no “traceable standard beam width” the beam was first
measured under the most ideal conditions. This includes a large beam of high
intensity, and using 2x apertures and negative noise components. Then as
measurement conditions are changed the “error’ is calculated as the percen-
tage change in measured beam width from the measurement made under
the ideal conditions. All measurements in Figs. 24-26 were made on the
same beam and in the same time frame.

Figures 24a and 24b illustrate the measured experimental accuracy of
making second moment beam width measurements with and without a 2x
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Figure 23 (a) Simulated beam width error versus number of pixels without a 2x
aperture; (b) simulated beam width error versus number of pixels with a 2x aperture.

software aperture. Figure 24a illustrates the accuracy versus the irradiance
of the peak pixel on the camera. Notice that with the 2x software aperture
around the beam, the irradiance can be reduced to as low as 16 counts out of
256, or roughly 5% of saturation, and the beam width measurement error is
still only about 3%. Without an aperture the beam width measurement error
is in the 3-5% range, regardless of the irradiance of the beam. In Fig. 24b it
is shown that the number of pixels in the beam can be reduced to about
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Figure 24 (a) Measured beam width error versus irradiance with and without a
2x aperture; (b) measured beam width error versus number of pixels with and with-
out a 2x aperture.
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Figure 25 (a) Measured beam width error versus irradiance with and without
negative baseline numbers; (b) measured beam width error versus number of pixels
with and without negative baseline numbers.
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Figure 26 (a) D4o versus KE beam width error versus irradiance (with aperture
and negative numbers); (b) D4o versus KE beam width error versus number of pixels
(with aperture and negative numbers).
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3 x 3 pixels before the beam width error measurement rises to 3%. Without
an aperture in the beam the beam width error is always in the 3-5% range,
and at 3 pixels the error rises to over 60%.

Other conditions that are necessary to accurately measure the second
moment beam width include accurate baseline control. This is done by
having the software perform a multiple frame average of each individual
pixel in the camera while the camera is not illuminated. This baseline is then
subtracted from the signal when the laser is being measured. This baseline
subtraction eliminates not only total offset of the baseline, but also any
shading in the camera. (Shading is defined as the offset in the baseline not
being uniform across the camera, but varying from one side to the other.)

In addition to accurate baseline control and 2x software apertures
mentioned in the previous paragraph, it is also very important to maintain
the negative numbers derived from background subtraction as described
previously. The following figures illustrate measurements made on an actual
laser beam to determine the relative accuracy of making beam width mea-
surements using both second moment and knife-edge under varying condi-
tions. Figures 25a and 25b illustrate the ability of the second moment
algorithm to accurately measure beam width with and without negative
numbers in the baseline. Notice that in Fig. 25a where the beam is reduced
in irradiance, the beam can be as low as 15 counts or 5% of saturation, with
only 3% error. However, without negative numbers in the baseline, at 15
counts the beam width error is 100%. Figure 25b illustrates the ability to
accurately measure beam width as a function of the number of pixels in the
beam with and without negative numbers in the baseline. Having the nega-
tive numbers improves the accuracy by about a factor of 5 for larger beams.
At 3 x 3 pixels the accuracy is 3% with negative numbers, and just over 7%
without negative numbers.

Figures 26a and 26D illustrate the measurement accuracy of the second
moment beam width method compared to the accuracy of the knife-edge
algorithm. In Fig. 26a the measurements are compared versus irradiance of
the beam. In Fig. 26b they are compared versus the number of pixels in the
beam. In both cases an aperture and negative numbers are used. Note that
both second moment and knife-edge have approximately the same measure-
ment accuracy in these conditions.

F. Other Important Beam Profile Measurements

1. Beam Ellipticity

With camera-based beam profiling systems it is relatively simple for the
software to measure the ellipticity of laser beams. The software typically
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finds the major axis of a beam, and then sets the minor axis perpendicular to
the major axis. Once the major axis is found, the angle that the major axis
deviates, typically from the X-axis, is given, and the ratio of the major to
minor axis widths is calculated. This is an extremely useful measurement in
laser beam alignment. It is particularly useful in aligning lenses to laser
diodes, which are highly elliptical. Typically a special lens is used with
diodes to circularize the beam. The alignment of this lens to the diode is
extremely critical. With mechanical scanning systems it is very cumbersome
to find the major and minor axes. Whereas with a camera-based system the
entire beam profile is obtained in every frame of the camera, so the ellipticity
can be found instantaneously. This makes it extremely rapid to do beam and
component alignment in real time.

Another important reason for knowing the ellipticity of the laser beam
is in industrial applications. Typically if the beam becomes elliptical, a laser
used for cutting irregular shapes will have a different cut width in one axis
than in the other. By measuring the ellipticity and correcting it when it
goes beyond acceptable limits, industrial users can eliminate creating
scrap materials.

2. Gaussian Fit

In many cases the desired beam irradiance profile is a Gaussian beam with
its irradiance at any point in the X—Y plane corresponding to Eq. 4. There
are a number of ways to perform a fit of the real beam to the Gaussian
equation. One of these is to minimize the deviation, which is defined in Eq.
5. This fit can either be along an X /Y-axis, a major/minor axis, or can be
performed over the entire laser beam. Being performed over the entire
beam is useful in that it means that any energy off axis contributes to
determining how well the beam fits a perfect Gaussian. In addition to
these equations, the actual data of beam profile irradiance can be exported
to a spreadsheet and user’s can perform the calculations according to their
own method.

Gaussian equation:

J :Joe72[(xff/w\-)2+<J’fﬁ/w,‘)2] +4 (4)
where:

J = amplitude at the point (x, y)

Jo = amplitude at the Gaussian center
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x = x location of pixel
X = x location of the Gaussian center

w, = horizontal radius at 1/¢* of energy
y =y location of pixel
y = y location of the Gaussian center

w, = vertical radius at 1 /e* of energy

A = offset

Minimization of the deviation can be performed by varying the para-
meters of Eq. 4 using the spreadsheet solve feature. A is an offset term which
is set to zero, i.e. disregarded in beam analyzers, because as stated above, the
background is carefully set to zero. The definition of the deviation is

Z—s)
7= Z;E—z ) ©)

where:
o = standard deviation
Z = pixel irradiance
s = Gaussian surface irradiance
n = number of pixels

Gaussian fit as a measure of the quality of a laser beam is becoming
less important. It has been shown that a multimode beam with the right
combination of modes can look Gaussian (26), and can very closely fit to a
Gaussian curve. Nevertheless, the beam has many modes, and is far from
true TEM, mode. A multimode will not follow the propagation laws of a
perfect Gaussian beam, and a user can be misled by the Gaussian fit.
Instead, the parameter M> has become more popular as representing the
reality of how close the beam is to a true TEM,, Gaussian. M> will be
discussed in more detail below.

3. Top Hat Measurement

Many real beams are intended to be flat top. Some of the beam shaping
chapters earlier in this book discuss how to obtain uniform flat tops from
Gaussian and other input beams. A flat top beam is useful in many applica-
tions where the irradiance should be uniform over a given cross section.
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Applications include medical processes such as wine spot removal and
photorefractive keratotomy, wherein a uniform portion of the cornea of
the eye is removed. Industrial applications in which a flat top is useful
include cleaning of surfaces and marking.

Camera-based systems enable easy and accurate measurements of flat
top beams. The software is programmed to give a readout of the average
irradiance, or the mean across the flat top, the standard deviation of the
variations from the mean, and the standard deviation divided by the mean,
which gives a percentage flatness. Also the minimum and maximum can be
provided, which give additional information about the relative flatness of
the beam. The flat top factor (30) is a way to give a quantitative and intuitive
measure of how flat a top hat beam is. (The equations are given in Ref. 30.)
A typically square beam would have a top hat factor of 1. A Gaussian beam
has a top hat factor of 0.5. Therefore, most beams will fall somewhere
between 0.5 and 1. In addition to measuring the flatness of the top hat,
the software can also calculate the top hat area and the size or width of
the top hat beam. Figure 27a shows a typical top hat beam, and Fig. 27b
shows the typical calculations.

4. Divergence Measurement

Divergence is an important characteristic of laser beams. It gives the angle at
which the beam is diverging from a collimated parallel beam. It is important
because the lower the divergence, the longer the beam will remain at a given
diameter. Typically when low divergence is necessary, a beam is often
expanded to a large width, and then the divergence of this large width
beam is smaller. Nevertheless, beam divergence by itself does not provide
the true characteristics of a beam, since as just mentioned, simply expanding
the beam to a larger waist can change it. This will be explored in more detail
in the M? section to follow.

5. Statistical Measurement

Statistics on all measurements can provide information on long term
stability of the laser beam. A typical example of statistical measurement is
shown in Fig. 28. This figure illustrates a number of the basic measurements
possible from the software, along with the statistics provided by sampling
twenty calculations to determine the beam stability. Statistics can be per-
formed in a large variety of ways. For example, software can be arranged so
that only one measurement is made out of every few hundred frames, then
statistics are calculated on thousands of such frames. This enables one to
track the stability of a laser with respect to time, temperature fluctuations,
or other characteristics of interest. Statistics typically provide the mean or
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Figure 27 (a) Typical top hat beam; (b) top hat calculations.
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Samples 20 20 20 20 20
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Figure 28 Statistical measurement of the basic laser beam parameters.
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Figure 29 Pass/fail dialog box.
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average measurement of a parameter, the standard deviation, and the mini-
mum and maximum to which that characteristic has drifted.

6. Pass/Fail Measurements

Figure 29 shows a typical dialog for a pass/fail measurement. Essentially all
of the quantitative measurements being made on the laser beam can have
pass/fail limits set in one of these dialog boxes. Thus, for example, if the
centroid location is critical in a manufacturing or other environment, a
maximum radius from a given position can be set. The software can then
be programmed to provide an alarm if the parameter of interest drifts out-
side the limits. This feature can be used in many environments, including
industrial, instrument design, laser stability and design, and others.

G. M2 Measurements

M?, or the factor k = 1 /M % in Europe, has become increasingly important
in recent years in describing the quality of a laser beam (31-43). In many
applications, especially those in which a Gaussian beam is the desired pro-
file, M? is the most important characteristic describing the quality of the
beam. Figure 30 illustrates the essential features of the concept of M? as
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Figure 30 Curve showing M” (characteristics and equations relating M to the
beam focused spot size.)
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defined by Eqgs. 6a and 6b. As shown in Fig. 30, if a given input beam of
width D;, is focused by a lens, the focused spot size and divergence can be
readily predicted. If the input beam is a pure TEMy,, the spot size equals a
minimum defined by Eq. 6a and d, in Fig. 30. However, if the input beam
D;, is composed of modes other than pure TEM, the beam will focus to a
larger spot size, namely M? times larger than the minimum, as shown
mathematically in Eq. 6b, and d, in Fig. 30. In addition to defining the
minimum spot size, M also predicts the divergence of the beam after the
focused spot. Specifically, the real beam will diverge M? times faster than an
equivalent TEM,, beam of the same width. Figure 30 illustrates what hap-
pens to a beam after going through a focusing lens, but the same principles
apply if no lens is involved. That is, the beam will diverge more rapidly by a
factor of M? than if it were true TEMy. The ISO definition for the quality
of a laser beam uses M~ as the fundamental quality parameter.

doo = 4\f/mDj, (6a)
dy = M*4\f /7Dy, (6b)
where

A = the wavelength
f = the focal length of the lens
D;,, = the width of the input beam.

In measuring and depicting M?, it is essential that the correct beam
width be defined. The ISO standard, and beam propagation theory indicate
that the second moment is the most relevant beam width measurement in
defining M. Only the second moment measurement follows the beam pro-
pagation laws so that the future beam size will be predicted by Egs. (6a) and
(6b). Beam width measured by other methods may or may not give the
expected width in different parts of the beam path.

M? is not a simple measurement to make. It cannot be found by
measuring the beam at any single point. Instead a multiple set of measure-
ments must be made as shown in Fig. 31 wherein an artificial waist is
generated by passing the laser beam through a lens with known focal length.
One essential measurement is to measure the beam width exactly at the focal
length of the lens. This gives one measurement of the divergence of the
beam. Other measurements are made near the focal length of a lens to
find the width of the beam and the position at the smallest point. In addi-
tion, measurements are made beyond the Rayleigh range of the beam waist
to confirm the divergence measurement. With these multiple measurements
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Figure 31 Multiple measurements made to measure M.

one can then calculate the divergence and minimum spot size, and then
going backwards through Eq. (6b), one can find the M of the input beam.

The measurement shown in Fig. 31 can be made in a number of ways.
In one commercial instrument, shown in Fig. 12, a detector is placed behind
a rotating drum with knife edges, and then the lens is moved in the beam to
effectively enable the measurement of the multiple spots without having to
move the detector. This instrument works extremely well as long as the
motion of the lens is in a relatively collimated part of the laser beam.
However, if the beam is either diverging or converging in the region
where the lens is moving, the resultant M? measurement can be misleading.

The ISO method (28) for measuring M? is to have the lens in a fixed
position, and then make multiple detector position measurements as shown
in Fig. 31. This can be done by placing a lens on a rail and then moving the
camera along the rail through the waist and through the far field region.
There are commercial instruments that perform this measurement automa-
tically without having to manually position the camera along the rail. One of
these is shown in Fig. 32, wherein the lens and the camera are fixed, but
folding mirrors are mounted on a translation table, and moved back and
forth to provide the changing path length of the beam. A typical readout of
an M’ measurement is shown in Fig. 33. In this case a collimated laser diode
was measured, which gave a much greater divergence in the X-axis than in
the Y-axis. The steep V' curve displayed is the X-axis of the beam coming to
a focus following the lens. The more gradual curve is the focus of the less
divergent Y-axis. Notice that while for most of the range the X-axis has a
wider beam width, at focus the X axis focuses smaller than the Y-axis. Also,
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Figure 32 Instrument with fixed position lens for measuring M?>.

the X-axis M> was 1.46, whereas the Y-axis M> was only 1.10. The M?
reported in the numbers section is calculated from the measurements of the
beam width at the focal length, the minimum width, and the divergence in
the far field according to the equations in the ISO standard.

One of the difficulties of accurately measuring M? is accurately mea-
suring the beam width. This is one of the reasons that so much effort has
been made to define the second moment beam width, and create algorithms
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Figure 33 M’ measurement display and calculation readout.
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to accurately make this measurement. Another difficulty in measuring this
beam width is that the irradiance at the beam focus is much greater than it is
far from the Rayleigh length. This necessitates that the measurement instru-
ment operates over a wide signal dynamic range. Multiple neutral density
filters are typically used to enable this measurement. An alternative exists
with cameras or detectors that have extremely wide dynamic range, typically
12 bits, so that sufficient signal-to-noise ratio is obtained when the irradi-
ance is low, and still not saturate the detector near the focused waist.

There are some cases when M? is not a significant measure of the
quality of a laser beam. For example, flat top beams for surface processing
typically have a very large M?, and M~ is not at all relevant to the quality of
the beam. Nevertheless, for many applications in nonlinear optics, industrial
laser processing, and many others, the smallest possible beam with the M
closest to 1 is the ideal. Some flat top beam mappers are designed for an
input Gaussian beam and then the M> of the input beam should be very
close to 1, and the beam widths should closely match the design width. This
is treated in more detail in Chapter 3.

H. Signal Processing

Careful control of the camera baseline and proper treatment of both positive
and negative going noise enable signal processing that would not otherwise
be possible. Figure 34 shows a HeNe laser beam at near saturation of a
CCD camera. This beam was then blocked, and signal summing of 256
frames was performed to determine the noise distribution under summing
conditions. This noise is shown in three dimension in Fig. 35a. The darker
components of noise at the bottom of the distribution are the negative-going
components. With accurate baseline control and treatment of negative noise
components, Fig. 35b shows that the distribution of the noise is roughly
Gaussian, and is centered at zero. This is what would be hoped for from
summing many frames of random noise.

The laser beam of Fig. 34 was then passed through an ND?2 filter,
which attenuated it by a factor of roughly 100. At this point the laser
beam was completely buried in the random noise for each single frame.
Again 256 frames of signal were summed, and the signal rose out of the
noise as shown in Fig. 36a. In this case the signal sums as the number of
frames, whereas the noise sums roughly as the square root of the number of
frames. Thus the signal-to-noise ratio is improved by approximately the
square root of the number of frames summed. Note that this is possible
only when negative noise components are used. Otherwise if negative com-
ponents are clipped at zero, the noise will sum to a positive DC offset.
Figure 36b shows the beam profile of 36a when adjacent pixels in a 4 x 4
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Figure 34 HeNe laser beam used in signal processing experiment.

matrix are summed together. Notice a tremendous noise cancellation leaving
a much cleaner view of the beam profile. This results from the summing of
adjacent positive and negative noise components. Figure 36¢ shows a similar
way of providing a clearer beam profile picture by using convolution to
average out the noise in the background. In all three cases of Fig. 36 the
beam width measurement, from the measurement of the beam in Fig. 34,
was in error by only about 5-7%. This is quite phenomenal for a beam that
started out buried in the noise.

. Wavefront Phase

A more advanced measurement on laser beam profile is the wavefront phase
of the laser beam. The profile simply measures the irradiance, but does not
predict what the irradiance will be at any point further along the propaga-
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Figure 35 (a) CCD camera noise after sum of 256 frames; (b) distribution of noise
shown in Fig. 35a.
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(b)

Figure 36 (a) Beam of Fig. 34 after attenuation of about 100 and summed for 256
frames; (b) beam of Fig. 36a with summing of pixels in a 4 x 4 matrix; (c) beam of
Fig. 36a with convolution over a 7 x 7 array.
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tion path. A measurement of M? tells how much more rapidly a beam will
diverge, but does not give any information about the manner in which this
divergence will occur. A measurement of wavefront phase gives the details
of the beam distortion that are reported as a simple number in M2
However, wavefront phase is a more complicated measurement to make,
as well as to make use of. It is likely that as users become more sophisti-
cated, wavefront phase will become an increasingly important measurement
related to the beam profile. Currently there are two methods of measuring
the wavefront phase in which commercial instruments are available. One is
to use an interferometer, and the second is to use a Hartman array of
individual detectors. For some beam shaping problems, knowledge of the
wavefront phase is important. (This is discussed in Chapter 3 with respect to
collimation and input beam requirements.)

Vil. SUMMARY

Beam shaping generally requires beam profile measurement. This is required
on the input beam to make sure that it has the proper characteristics. It
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is also required on the output beam to make sure the beam shaping mechan-
ism is operating properly. Mechanical scanning instruments can provide
single axis profiles, which are sufficient in many cases.

Electronic measurements of laser beams using CCD and other solid-
state cameras yield very detailed information on both the input beam and
the output beam. Using such beam profilers, scientists and users in beam
shaping and many fields of lasers are able to greatly enhance the operation
of their instruments. Giving an accurate view of the beam profile, and
making precise measurements of beam parameters, such as beam width
and other characteristics, provides the ability to properly condition the
input beam and measure the shaped output beam.

REFERENCES

1. J Darchuk. Beam profilers beat laser-tuning process. Laser Focus World 205-
212, May 1991.
2. G Forrest. Measure for measure (letters). Laser Focus World 55, September

1994.

3. L Langhans. Measure for measure (letters). Laser Focus World 55, September
1994.

4. CB Roundy. A beam profiler that stands alone. Lasers And Optronics 81, June
1990.

5. CB Roundy. The importance of beam profile. Physics World 65-66, July 1990.

6. CB Roundy. Instrumentation for laser beam profile measurement. Industrial
Laser Review 5-9, March 1994.

7. CB Roundy. So, who needs beam diagnostics? Lasers & Optronics 19-22, April
1994.

8. CB Roundy. Seeing is believing with visual laser-beam diagnostics. Laser Focus
World 117-119, July 1994.

9. CB Roundy. Measure for measure (letters). Laser Focus World 55, September
1994.

10. CB Roundy. Practical applications of laser beam profiling. Lasers & Optronics
21, April 1994.

11. CB Roundy. Electronic beam diagnostics evaluate laser performance. Laser
Focus World 119-125, May 1996.

12. CB Roundy. PC-based laser analyzers: New uses require improved devices.
Photonics Spectra 97-98, January 1997.

13. MW Sasnett. Propagation of multimode laser beams: the M> factor. In: The
Physics and Technology of Laser Resonators. DR Hall, PE Jackson, eds. New
York: Adam Hilger, 1989, 132-142.

14.  AF Siegman. Lasers. Mill Valley, CA: University Science Books, 1986, Chapter
7, p. 697.

Copyright © 2000 Marcel Dekker, Inc.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

YV Carts. Excimer-laser work spurs UV beam-profiler development. Laser
Focus World 21:24-30, August 1989.

CB Roundy. Laser-assisted radialeratotomy. Photonics Spectra 122, October
1994.

CB Roundy. Applying beam profiling to industrial lasers. Lasers & Optronics,
supplement to Metalworking Digest 5, August 1996.

MW Sasnett. Beam geometry data helps maintain and improve laser processes.
(Part 1). Industrial Laser Review, 9—13, August 1993.

MW Sasnett. Beam geometry data helps maintain and improve laser processes
(Part 2). Industrial Laser Review 15-16, May 1994.

MW Sasnett. Characterization of laser beam propagation. Coherent Mode-
Master Technical Notes, 1990.

CB Roundy. Pyroelectric arrays make beam imaging easy. Lasers And Appli-
cations 55-60, January 1982.

CB Roundy. Digital imaging produces fast and accurate beam diagnostics.
Laser Focus World 117, October 1993.

CB Roundy, GE Slobodzian, K Jensen, D Ririe. Digital signal processing of
CCD camera signals for laser beam diagnostics applications. Electro Optics 11,
November 1993.

CB Roundy. 12-bit accuracy with an 8-bit digitizer. NASA Tech Briefs 55H,
December 1996.

RD Jones, TR Scott. Error propagation in laser beam spatial parameters.
Optical and Quantum Electronics 26, 25-34, 1994.

AE Siegman, MW Sasnett, TF Johnston, Jr. Choice of clip level for beam width
measurements using knife-edge techniques. IEEE Journal of Quantum Electro-
nics 27 (4):1098-1104, 1991.

M Fleischer. Laser beam width, divergence, and propagation factor: Status and
experience with the draft standard. SPIE pp. 2-11, 1991.

International Organization for Standardization. Test methods for laser beam
parameters: Beam widths, divergence angle and beam propagation factor.
Document ISO/11146, 1993.

M Sasnett, T Johnston, T Siegman, J Fleischer, D Wright, L Austin, D
Whitehouse. Toward an ISO beam geometry standard. Laser Focus World
53, September 1994.

G Klauminzer, C Abele. Excimer lasers need specifications for beam unifor-
mity. Laser Focus World, pp. 153-158, May 1991.

PA Belanger. Beam propagation and the ABCD ray matrices. Optics Letters
16:196-198. 1991.

R Borghi, M Santarsiero. Modal decomposition of partially coherent flat-
topped beams produced by multimode lasers. Optics Letters. 23:313-315, 1998.
PB Chapple. Beam waist and M> measurement using a finite slit. Optical Engi-
neering 33:2461-2466, 1994.

RM Herman, TA Wiggins. Rayleigh range and the M factor for Bessel-Gauss
beams. Applied Optics 37:3398-3400, 1998.

Copyright © 2000 Marcel Dekker, Inc.



35.

36.

37.

38.

39.
40.

41.

42.

43.

TF Johnston, Jr. M-squared concept characterizes beam quality. Laser Focus
World 173-183, 1990.

TF Johnston, Jr. Beam propagation (Mz) measurement made as easy as it gets;
the four-cuts method. Applied Optics 37:4840-4850, 1998.

GN Lawrence. Proposed international standard for laser-beam quality falls
short. Laser Focus World 109-114, 1994.

M Sasnett, TF Johnston, Jr. Beam characterization and measurement of pro-
pagation attributes. SPIE pp. 21-32, 1991.

AE Siegman. New developments in laser resonators. SPIE 122:2-14. 1990.
AE Siegman. Conference on Laser Resonators. SPIE/OE LASE 90, Los
Angeles, CA: January, 1990.

AE Siegman. Conference on Lasers and Electro-Optics. CLEO/IQEC
Anaheim, May 1990.

AE Siegman. Output beam propagation and beam quality from a multimode
stable-cavity laser. IEEE Journal of Quantum Electricity 29: 1212-1217, 1993.
W Woodward. A new standard for beam quality analysis. Photonics Spectra
139-142, 1990.

Copyright © 2000 Marcel Dekker, Inc.



	Laser Beam
Shaping
Theory and Techniques
	From the Series Editor
	Preface
	Contributors
	Contents
	Chapter 1: Introduction
	I. A Brief History
	II. Metrics For Beam Shaping Systems
	III. Discussion of Chapters
	IV. Choosing a Shaping Technique
	V. Further Information
	References
	Appendix: Additional Reading

	Chapter 2: The Mathematical and Physical Theory of Lossless Beam Shaping
	I. Introduction
	II. Mathematical Preliminaries
	A. Basic Fourier Analysis
	B. The Uncertainty Principle and the Space Bandwidth Product
	C. Separation of Variables in Cylindrical Coordinates
	D. Hankel Transforms

	III. The Method of Stationary Phase
	A. The Basic Idea of Stationary Phase
	B. The Rate of Convergence of the Method of Stationary Phase
	C. A Preliminary Transformation
	D. Generalized Functions
	E. HIgher Order Terms in the Method of Stationary Phase
	F. Lower- Order Discontinuities in the Phase Functions
	G. The Method of Stationary Phase in Higher Dimensions

	IV. Maxwell's Equations
	A. Maxwell's Equations
	B. The Wave Equation
	C. The Energy Flux

	V. Geometrical Optics
	A. Fermat's Principle
	B.The Eikonol Equation
	C. The Eikonol Equation and Maxwell's Equation
	D. First-Order Non-linear Partial Differential Equations
	E. Fermat's Principle without Reflections
	F. Fermat's Principles for Reflecting Surfaces

	VI. Fourier Optics and Diffraction Theory
	A. Fresnel Diffraction Theory
	B. A Fourier Approach to Diffraction Theory
	C. Fourier Optics
	D. Limits of Validity of the Fresnel Approximation
	E. The Vector Theory of Diffraction

	VII. Geometrical Theory of Beam Shaping
	A. One-dimensional Theory
	B. Direct Product Distributions
	C. Radially Symmetric Problems 
	D. More General Distributions 
	E. Examples

	VIII. Diffraction Theory of Lossless Beam Shaping
	A. Scaling Properties
	B. One-dimensional Beam Shaping 
	C. Two-dimensional Beam Shaping
	D. Radially Symmetric Problems
	E. The Continuity of Theta
	F. One-dimensional Examples
	G. An Axisymmetric Example
	References


	Chapter 3: Gaussian Beam Shaping: Diffraction Theory and Design
	I. Introduction
	II. The Analytical Solution
	A. Optical Configuration
	B. Minimum Mean Square Error Formulation
	C. The Uncertainty Principle
	D. Stationary Phase Solution
	E. Positive and Negative Solutions
	F. Quadratic Phase Correction

	III. Collimated Uniform Irradiance Beams
	A. Conjugate Phase Plate
	B. Relay Optics

	IV. Design Considerations
	A. Target Spot Quality
	B. Modeling System Performance
	C. Telescope Considerations
	D. Truncation Effects
	E. Positive and Negative Phase Functions

	V. Alignment and Scaling Errors
	VI. Method of Design
	VII. Experimental Evaluation
	VIII. Summary
	References
	Appendix A
	Appendix B

	Chapter 4: Geometrical Methods
	I. Introduction
	II.Theory of Laser Beam Profile Shaping
	A. Optical Design and Energy Balance Condition
	B. Constant Optical Path Length Condition
	C. Solution of the DIfferential Equations
	D. Analysis of Optical System

	III. Non-projective Transformations
	IV. Refractive Intensity Profile Shaping Systems
	A. Two Plano-convex Lens Systems
	B. Axial GRIN Lens Systems

	V. Reflective Intensity Profile Shaping Systems
	A. One-mirror Profile Shaping Systems
	B. Two- mirror Profile Shaping Systems

	VI. Conclusion
	References

	Chapter 5: Optimization-based Techniques for Laser Shaping Optics
	I. Introduction
	A. Scope of Applications
	B. Computational Methods for Irradiance Calculations via Ray-trace Methods

	II. Theory and Optimization
	A. Overview of Iterative Computational Optimization Methods
	B. Genetic Algorithms
	C. Parallelization of Genetic Algorithm

	III. Applications
	A. Design and Analysis of a Beam Shaper/ Projector
	B. Design and Analysis of a Gradient-Index Shaper
	C. Design and Analysis of a Two-lens Beam Shaper

	IV. Conclusions
	References
	Appendix: Code Samples: GA macro:ga.seq.1 (CODE V macro Language)

	Chapter 6: Beam Shaping with Diffractive Diffusers
	I. Introduction
	II. Properties of Diffractive Diffusers
	A. Near Field Beam Shapers (Remapping Optics)
	B. Far Field Beam Shapers (Gratings, Diffusers)
	C. Mathematical Description of a Diffuser

	III. Simple Design Example
	IV. Fabrication Considerations
	V. Speckle
	A. Size of Speckle
	B. Speckle Reduction

	VI. Applications of Diffusers
	References

	Chapter 7: Multi-aperture Beam Integration Systems
	I. Introduction
	II. Theory
	A. Diffraction Considerations
	B. Interference Effects
	C. Averaging
	D. Coherence Effects
	E. Imaging Integrators

	III. Design Considerations
	A. Diffracting Integrators Layout
	B. Imaging Integrator Layout
	C. Subaperture Shape
	D. Lens Phase Functions and Aberrations

	IV. Fabrication Considerations
	V. Applications and Experimental Evaluation
	A. Experimental Evaluation of Diffracting Beam Integrator
	B. Compact Fiber Injection System

	VI. Summary
	Acknowledgment
	References

	Chapter 8: Classical (Non-laser) Methods
	I. Introduction
	II. Theory of Non-laser Beam Profile Shaping
	A. Irradiance(Illuminance) Analysis with the Flux Flow Equation
	B. Optical Design of Non-laser Illumination Systems

	III. Application to Point and Lambertian Source
	IV. Conclusion
	References
	Appendix A: Summary of Some Concepts and Results from Differential Geometry

	Chapter 9: Current Technology of Beam Profile Measurements
	I. Introduction
	II. Laser Beam Properties
	A. Unique Laser Beam Characteristics
	B. Significance of the Beam Profile
	C. Effects of Distorted Beam Profiles

	III. Laser Beam Profile Measurement Methods
	A. Non-electronic Methods
	B. Electronic Measurement Methods

	IV. Camera-based Instrument Description
	A. Computers
	B. Frame Grabbers
	C. Beam Analysis Software
	D. Camera Used in Beam Profile Measurement
	E. Laser Beam Attenuation
	F. Beam Size

	V. Viewing Beam Profiles
	A. Two-dimensional Beam Profile Displays
	B. Three-dimensional Beam Profile Displays

	VI. Quantitative Measurements
	A. Relative Beam Power or Energy
	B. Peak Power or Energy
	C. Peak Pixel Location
	D. Beam Centroid Location
	E. Beam Width
	F. Other Important Beam Profile Measurements
	G.  M2 Measurements
	H. Signal Processing
	I. Wavefront Phase

	VII. Summary
	References





