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Using Eclipsing Z-scan technique for determining the fifth order nonlinear refractive index
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Abstract- By replacing the aperture in the closed aperture (CA) Z-scan with an opaque disk, the modified version of Z-
scan namely the eclipsing Z-scan (EZ-scan) significantly enhances the peak-valley transmittance difference yielding a
much greater measurement sensitivity than that observed with CA Z-scan at the similar conditions. This paper introduces
the EZ-scan technique as a highly effective method for determining the fifth-order nonlinear (NL) refractive index of
materials. The study highlights the higher sensitivity of the EZ-scan method for precise measurements and compares the
sensitivity of CA Z-scan and EZ-scan. While an analytical relation for normalized transmittance can be derived for CA
Z-scan, this is not feasible for the EZ-scan technique. Instead, an empirical relationship is proposed to determine the fifth-
order NL refractive index from EZ-scan measurements. The proposed relation links the peak-valley transmittance
difference, the fifth-order NL phase shift, and the disk obscureness, demonstrating that increased disk diameter improves
sensitivity. This advancement provides a valuable tool for researchers in NL optics to determine the fifth order NL
refractive index easily and precisely once the normalized transmittance of the EZ-scan is measured.
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1. Introduction

The nonlinear (NL) refractive index is an intensity-
dependent property of materials that causes a change in
the refractive index due to intense light-matter
interaction. This variation in refractive index can give
rise to various phenomena, including self-phase
modulation, cross-phase modulation, self-focusing, and
self-defocusing, each of which holds significant practical
relevance. These NL optical effects have enabled
advancements in applications such as optical limiting and
all-optical switching, a key component in photonic
communication systems and signal processing [1].

Among various methods proposed for determining the
NL refractive index, the Z-scan technique stands out due
to its simplicity and high precision, making it a widely
preferred approach in NL optical studies [2, 3]. In the
closed aperture (CA) Z-scan version the sample is
scanned along the propagation direction of a tightly
focused laser beam while the power transmitted through
a small aperture placed after the sample is measured as a
function of the sample position. The resulting signal
typically exhibits a characteristic valley-peak pattern for
a positive NL refractive index or a peak-valley sequence
for a negative NL refractive index.

In the eclipsing Z-scan (EZ-scan) technique, the aperture
is replaced by an opaque disk, and the power transmitted
around the disk is measured as a function of the sample
position [4-6]. Since the intensity of a Gaussian beam
decreases away from its center, changes in power
transmitted around the disk are highly sensitive to
variations in the beam size. Consequently, the sensitivity
of the EZ-scan technique is much greater than that of the
CA Z-scan method [7].

In this work, an empirical relationship is proposed to
determine the fifth-order NL refractive index by
measuring the maximum and minimum transmittance
values of the EZ-scan signal.

2. Theory of Z-scan

In the Z-scan technique, the NL sample acts as a
diffractive plane. Consequently, the electric field
distribution on a plane positioned sufficiently far from
the sample can be determined using the Fraunhofer
diffraction integral.

E (z,r) :.LIJO(kl)Ee (z,r")2xzrdr'
iAd 5 d (5)

E,=E, exp(i AD)

where is the electric field on the

exit surface of the sample, E, is the electric field
incident on sample, A® =kLAn s the NL phase
k=2r/2

change along the sample, is the wavenumber,

A is the laser wavelength, L s the sample thickness,

An =n,I with ™2 the third order NL refractive index or

_ 2
An =n,I with "4 the fifth order NL refractive index

and { is the intensity.
The normalized transmittance through an aperture can

then be defined as

“E(r,z,AD 2ra’r
i [E .z ,00)

T(z)=

I(: E(r,z,AD = O)|2rdr ©

where ’a is the aperture radius.

Similar to Eq. (2), the normalized transmittance for EZ-
scan can be defined by integrating the intensity from the
edge of the obscuring disk to infinity.

T(z)= j .
[z, a0 =0) rdr

2
E(r,z ,ACD)| rdr

(N

where "¢ is the disk radius.

Employing Egs. (6) and (7), the normalized transmittance
is obtained for CA Z-scan and EZ-scan by substituting

A® =kLn,I
AD =kLn,I*

in the case of third order nonlinearity or
in the case of fifth order nonlinearity.

Further calculations reveal a relationship between the NL
phase change and the peak-valley transmittance
difference in the Z-scan technique when using a Gaussian
laser beam. In CA Z-scan, for a medium with third-order

AT, =0.406(1-S,)"*|Ad,|

nonlinearity and for a
medium with fifth order nonlinearity
AT, =021(1-S,)"”|A®

P ( 2) | 0| where
AT, =T __-T._.

P max.©omin denotes the peak-valley

transmittance  difference, S is the aperture

S, =[1-exp(-2w>/r})] and

transmittance given by
W is the beam radius on the aperture plane.

In the EZ-scan performed for a medium with third order

AT, =0.68(1-S,)""|Ad,|

nonlinearity where
S =|1—exp(-2w */r?

d [ p( / ¢ )] denotes the disk
obscureness.
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3. Results and discussions o 164 —s5,=0.95
o \
Figure 1 compares the normalized transmittance E 1B ees zdjg:: i
measured by CA Z-scan and EZ-scan for a fifth-order NL b= i M °:0'995
phase change of 0.1 rad. The red curve represents the CA st il o £
Z-scan signal with a small aperture transmitting 1% of c 121 Aw=015 I3 “.:Ji
the laser beam power, while the blue curve corresponds ’.; 11+ ;
to the EZ-scan signal, where a large opaque disk blocks .g 1/04
99% of the beam power. © 0/9- N
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Fig. 1. Normalized Transmittance assuming a fifth order phase
change of 0.1 rad. Red curve indicates the CA Z-scan signal
and blue curve represents the EZ-scan signal.

As shown, the peak-valley transmittance difference in
EZ-scan is approximately 25 times greater than that in
CA Z-scan, resulting in significantly higher sensitivity
for determining the NL refractive index. To establish an
empirical relationship between the peak-valley
transmittance difference, fifth-order NL phase change,
and disk obscureness, the normalized transmittance was
computed using Eq. (3) for varying phase changes and
disk obscureness. Figure 2 illustrates the EZ-scan
normalized transmittance for a fifth-order NL phase
change of 0.15 rad, considering disk obscureness of
S=0.95, 0.98, 0.99 and 0.995. The results demonstrate
that as the disk obscureness increases, the peak-valley
transmittance difference becomes more pronounced,
thereby improving the sensitivity of the technique.

4 3 2 4 0 1 2 3 4
Sample Position (Z/7,)

Fig. 2. EZ-scan normalized transmittance for different disk
obscureness.

Figure 3 illustrates the EZ-scan normalized transmittance
for varying fifth order NL phase change considering a
large opaque disk blocking 99% of the laser beam power.
As anticipated, the peak-valley transmittance difference
increases with increasing the fifth order NL phase
change.
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U5 -~ - AD=0.1 i
1/4-
1134
1124
111+
1/0-
0/9
0/8-
0/74
0/64

Normalized Transmittance

4 3 2 4 0 1 2
Sample Position (Z/Z)

w
b

Fig. 3. EZ-scan normalized transmittance for different fifth
order NL phase change.

Fig. 4 exhibits the Peak-valley transmittance different
versus disk obscureness assuming a fifth order NL phase
change of 0.05 rad.
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0/8 4. Conclusion
@ Data point

0/7{ —Fitcurve The normalized transmittance for two versions of Z-
0/6 4 AD =005 scan, namely CA Z-scan and EZ-scan, was calculated and
:__E 015 ’ compared for fifth-order nonlinearity. The results
| indicate that the measurement sensitivity of EZ-scan is at
304+ least 25 times greater than that of CA Z-scan. While an
. 073 analytical relation for the normalized transmittance as a
:z“ o2 function of sample position can be derived for CA Z-
scan, this is not possible for EZ-scan. Therefore, we
0114 = proposed an empirical relation that enables the
ood ¢ determination of the fifth-order NL refractive index once

0/81 0/84 0/87 0/90 0/33 0/96 0/99
Disk Obscureness (S,)

Fig. 4. Peak-valley transmittance different versus disk
obscureness.

The circles in Fig. 4 show the calculated data points and
the solid blue line represents the fitted curve described by

AT, =04(1-S)""|Ad,|

Further investigation reveals that the proposed empirical
relation remains valid for larger NL phase change up to
approximately 0.2 rad for large disk obscureness in the
range of 09<§,<0.995 )

Fig. 5 illustrates the Peak-valley transmittance different
versus NL phase change for different disk obscureness of
0.98, 0.99 and 0.995. The straight lines represent the
linear fit given by the proposed relation

AT, =04(1-8)""|Ad,| o o
confirming its validity

within the range of investigation.
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@ Data points S, = 0.99 > g
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Fig. 5. Peak-valley transmittance different versus fifth order
NL phase change for different disk obscureness.

the normalized transmittance for EZ-scan with a known
disk radius is measured.
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