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Abstract
Nonlinear (NL) absorption and refraction are crucial optical phenomena in the development and application of optical mate-
rials. The Z-scan technique, first proposed by Bahae, is widely used to accurately measure the coefficients of NL absorption 
and refraction. This review presents a comprehensive overview of the most established versions of the Z-scan technique, 
including the transmittance closed aperture (CA) and open aperture (OA) Z-scan, reflecting CA and OA Z-scan, eclipsing 
Z-scan, and white light Z-scan. In each version, different sources with varying spatial and temporal intensity distributions 
are usually utilized. Numerical and analytical calculation results are provided for each version considering both continuous 
wave (CW) and pulsed laser sources. Unlike conventional reviews, which often summarize previously published results, this 
review primarily focuses on reproducing the findings from the literature. The analytical results, which are typically derived 
under specific approximations, are compared with numerical calculations to highlight the limitations of analytically derived 
relations. Furthermore, the necessary criteria and conditions for applying each Z-scan version are discussed.

List of symbols
P  Induced polarization
E  Applied electric field
� (n)  nth-order susceptibility
�
0
  Linear absorption coefficient

�
2
  Two-photon absorption (2PA) coefficient

�
3
  Three-photon absorption (3PA) coefficient

ñ  Complex refractive index
n
0
  Linear refractive index

n
2
  3rd-order nonlinear refractive index

n
4
  5th-order nonlinear refractive index

�
0
  Free space permittivity

�  Wavelength
k  Wavenumber in free space
�  Radiation frequency
I  Intensity (Irradiance)
Is  Saturation intensity

ΔΦ  Phase distortion arising from 3rd-order 
nonlinearity

ΔΨ  Phase distortion arising from 5th-order 
nonlinearity

r  Radial coordinate
z  Axial coordinate (sample position measured 

with respect to the beam waist)
z′  Axial coordinate within the sample
zR  Rayleigh length
x = z∕ zR  Axial coordinate normalized with respect to 

the Rayleigh length
w
0
  Beam waist radius

w(z)  Beam radius at distance z from waist
R(z)  Curvature radius of wavefront
L  Sample thickness
Leff   Effective thickness of sample
Ep  Pulse energy
�  Pulse duration
T   Normalized transmittance
f   Lens focal length
z
0x  Position of minimum beam size in x-direction 

for an astigmatic beam
z
0y  Position of minimum beam size in y-direction 

for an astigmatic beam
w
0x  Beam waist radius in x-direction for an astig-

matic beam
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w
0y  Beam waist radius in y-direction for an astig-

matic beam
zRx  Rayleigh length in x-direction for an astigmatic 

beam
zRy  Rayleigh length in y-direction for an astigmatic 

beam
X  Dimensionless geometric parameters defined as 

X = (z − z
0x)

/

zRx
Y   Dimensionless geometric parameters defined as 

Y = (z − z
0y)

/

zRy
G  Grean function
ra  Aperture radius
S (Sa)  Aperture transmittance
rd  Disk radius
Sd  Disk obscureness

1 Introduction

Nonlinear (NL) optics is a branch of optics in which amazing 
and applicable phenomena occur as a consequence of the inter-
action of intense electric fields with matter. When an intense 
electric field is applied to materials, the electron displacement 
from the equilibrium position is too large so that the induced 
polarization no longer scales linearly with the applied electric 
field. For nonrelativistic cases, a common way to describe the 
induced polarization versus applied electric field is using a 
power series expansion as follows:

where � (n) is a tensor representing the nth-order susceptibil-
ity (e.g. χ(2) describes the second-order NL effects, such as 
second harmonic generation (SHG), sum frequency genera-
tion (SFG), difference frequency generation (DFG), optical 
rectification (OR) and the Pockels effect, χ(3) describes 3rd-
order NL effects such as third harmonic generation (THG), 
the Kerr effect and two-photon absorption). In general, P and 
E are vectors, and the symbol ⊗ indicates a tensor product. 
Even-order susceptibilities are zero for media with inversion 
symmetry, whereas odd-order susceptibilities have nonzero 
elements for media with any spatial symmetry.

The NL susceptibilities are generally complex unitless 
quantities. For instance, the real and imaginary parts of 
the 3rd- and 5th-order susceptibilities are related to the NL 
refraction and NL absorption coefficients through the fol-
lowing equations.

(1)
P = 𝜀0

(

𝜒 (1) ⊗ E + 𝜒 (2) ⊗ EE + 𝜒 (3) ⊗ EEE + 𝜒 (4) ⊗ EEEE +⋯

)

(2)�
(3)

Im
=

c2�0n
2
0

�
�2

(3)�
(3)

Re
= 2c�0n

2
0
n2

where c is the speed of light in free space, �0 is the permit-
tivity of free space, n0 is the linear refractive index, � is the 
radiation frequency, �2 is the two-photon absorption (2PA) 
coefficient in units of m W−1 , n2 is referred to as the 3rd-
order NL refractive index in units of m2 W−1 , �3 is the three-
photon absorption (3PA) coefficient in units of m3 W−2 and 
n4 is the 5th-order NL refractive index in units of m4 W−2.

An intense light beam can produce intensity- or flux-
dependent changes in the refractive index and absorption 
coefficient of different materials through various mecha-
nisms [1]. Many different techniques have been proposed 
and applied to determine the NL refractivity and absorp-
tivity. Several methods for determining the NL refractive 
index, such as NL interferometry [2], four-wave mixing 
[3–6], ellipse rotation [7] and closed-aperture (CA) Z-scan 
[8, 9], have been reviewed in [10]. In [11], different tech-
niques, including direct and indirect methods for determin-
ing the NL absorption coefficient/cross section, such as 
upconverted fluorescence emission [12], transient absorp-
tion [13], loss modulation [14], spectrally resolved, two-
beam coupling [15], thermal lensing [16], MPA-induced 
photocurrent [17] and open-aperture (OA) Z-scan [18, 19], 
were reviewed.

Among these techniques, the Z-scan technique has 
become very popular since it is adequately sensitive and 
relatively easy to perform. It is also a technique by which 
both the NL refractive index and NL absorption coefficient 
for different orders of nonlinearities can be determined 
simultaneously. The Z-scan technique was first proposed by 
Bahae et al. [8, 9, 19].

Various modifications of the conventional Z-scan such as 
the two-color Z-scan [20–26], white light continuum (WLC) 
Z-scan [27–38], eclipsing Z-scan [39–46], reflection Z-scan 
[47–61], f-scan [43, 44, 62–64], I-scan [46, 65–68] and spec-
tral domain Z-scan [69], have been presented for different 
types of laser beams and pulse shapes [6, 18, 70–95]. The 
applicability of the Z-scan method goes beyond that of pure 
nonlinear optics. This technique is used, among other meth-
ods, to characterize cumulative thermal effects [96] or even 
linear optical coefficients [97].

Z-scan has been used for determining the NL optical 
properties of a variety of materials, including semiconduc-
tors, crystals, organic dyes and solutions. For many years, 
we employed a fully automatic Z-scan setup run by Lab-
VIEW to determine the 2PA cross section of newly syn-
thesized two-photon initiators (2PIs) used for two-photon 
polymerization (2PP) [35–38, 98–109]. We also developed 

(4)�
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c3�2
0
n3
0

�
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0
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a new version of the WLC Z-scan to determine the degen-
erate 2PA spectrum by running a single scan [35, 36].

The main purpose of this review is to collect the most 
famous and applicable versions of the Z-scan in one place 
and then compare their applicability for determining the 
different nonlinear properties of various media using dif-
ferent laser sources. In contrast to common review papers 
that very briefly report the results of published works, in 
this review, we attempt to reproduce the analytical and 
numerical results calculated for various versions of the 
Z-scan.

2  Introducing the Z‑scan technique

Z-scan is a method in which a single tightly focused laser 
beam is used as the pump as well as the probe beam. The 
examined sample is moved in the propagation direction 
of the laser beam through the focal point. As the sam-
ple approaches the focal point, the beam size decreases, 
leading to a higher intensity within the sample, which 
results in the appearance of NL optical phenomena such 
as self-lensing, saturation of absorption and multiphoton 
absorption (MPA) [37, 83, 101]. Two different versions 
of the Z-scan, namely, CA and OA, are used to determine 
the NL refractivity and absorptivity. In the CA method, 
a small aperture is placed between the sample and the 
detector, whereas in the OA scheme, there is actually no 
aperture; the entire transmitted power must be detected. In 
all versions of the Z-scan, the normalized transmittance/
reflectance is measured as a function of sample position. 
To extract the optical NL coefficients from the measured 
data, a proper relation of normalized transmittance versus 
sample position must be derived for each version of the 
Z-scan to determine the order of optical nonlinearity.

2.1  CA Z‑scan

The CA Z-scan technique is based on the transformation of 
phase distortion to amplitude distortion during beam propa-
gation through a sample. For instance, in case of positive 
nonlinearity, positive self-lensing (self-focusing) prior to 
focal point tends to increase the convergence of the beam 
exiting the sample, causing beam broadening on the aperture 
plane, which results in a decrease in the aperture transmit-
tance (Fig. 1b). After passing through the focus, the same 
self-focusing tends to weaken the beam divergency, leading 
to beam narrowing at the aperture plane and thus result-
ing in an increase in the aperture transmittance (Fig. 1c); 
hence, there is a null point as the sample crosses the focus. 
Therefore, in the normalized transmittance trace, a positive 
NL refractivity manifests itself by the appearance of a valley 
followed by a peak. Conversely, a prefocus peak followed by 
a postfocus valley is the Z-scan signature of a negative NL 
refractivity. Notably, the CA Z-scan signal is affected by 
both the NL refractivity and absorptivity. In the presence 
of MPA, the peak is suppressed, and the valley is enhanced, 
whereas the saturable absorption (SA) results in contrary 
behavior.

Figure 2 shows the intensity distribution on the obser-
vation plane located 100 mm from the beam waist when 
a Gaussian laser beam with a 20 µm waist radius travels 
through a NL medium. The wavelength was assumed to be 
800 nm, leading to a Rayleigh length of zR = 1.57mm . The 
maximum on-focus phase shift was considered to be 1 (i.e., 
ΔΦ0 = 1 ). The dotted green curve indicates the intensity 
distribution when the NL sample is far from the focus, as 
shown in Fig. 1a and 1d. The dashed red curve shows the 
distribution when the sample is located prior to focusing at 
z = −0.85zR (Fig. 1b), leading to beam broadening at the 
observation plane, and the solid blue curve represents the 
distribution when the sample is located after the focal point 

Fig. 1  Schematics of beam broadening and narrowing due to posi-
tive nonlinearity. a The sample is far from the focus where the inten-
sity is not sufficient to observe the nonlinearity. b Shows the beam 
broadening at the aperture plane due to self-focusing prior to focus, 

c shows the beam narrowing at the aperture plane because the same 
self-focusing effect tends to reduce the beam divergence after focus, 
and d is similar to a, where the sample is once again far from focus
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at z = 0.85zR (Fig. 1c), leading to beam narrowing at the 
observation plane.

Figure 3 shows a schematic of the CA Z-scan setup. 
A laser beam is first divided into two parts using a beam 
splitter. The less intense beam is detected by a diode Dr to 
monitor the laser power fluctuations. The more intense beam 
is focused by a lens. The sample mounted on a motorized 
translation stage is moved along the laser beam propagation 
direction through the focus. The power transmitted through 
a small aperture is measured by Dc as a function of sample 
position. Finally, the signal measured with Dc is divided by 
that measured with Dr to eliminate the effect of laser power 
fluctuations. Finally, the transmittance is normalized by 
dividing the measured transmittance by its average value 
obtained at points far from the focus where the transmittance 
appears almost as a straight line.

2.2  OA Z‑scan

Replacing the aperture with a large positive lens converts 
the CA to an OA Z-scan, as shown in Fig. 4. In this scheme, 
the transmittance is no longer sensitive to the NL refractivity 
but only to the NL absorptivity. The NL absorption is much 
stronger at the focus of the laser beam and decays as the sam-
ple moves away from the focus in either direction. Therefore, 
the OA Z-scan signal is symmetric with respect to the focal 
point, indicating a valley in the case of MPA and a peak in the 
case of SA.

Propagating a beam through a NL medium will cause 
changes in both the field amplitude and phase due to changes 
in the absorption coefficient and refractive index. Assuming 
a thin sample through which the diameter of the propagating 
beam is not altered due to diffraction or NL refraction, the 
amplitude and phase of the electric field of a traveling wave 
through the medium are governed by the following pair of 
equations.

where z′ is the axial coordinate within the sample, k is the 
wavenumber in free space, Δn(I) is the refractive index 
change, �(I) is the absorption coefficient and I is the inten-
sity with an SI unit of W m−2.

Δn(I) and �(I) can be expressed as a power series of inten-
sity as follows.

(6)
d(ΔΦ)

dz�
= kΔn(I)

(7)
dI

dz�
= −�(I) I

(8)Δn = n2 I + n4 I
2 +⋯

(9)�(I) = �0 + �2 I + �3 I
2 +⋯

Fig. 2  Intensity distribution at the aperture plane for different sample 
positions

Fig. 3  Schematic diagram of the CA Z-scan setup [110] Fig. 4  Schematic diagram of the OA Z-scan [110]
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where n2 and n4 are the 3rd- and 5th-order NL refractive 
indices related to the real parts of the 3rd- and 5th-order 
NL susceptibilities, respectively; �0 is the linear absorption 
(i.e., 1PA) coefficient; �2 is the 2PA coefficient related to 
the imaginary part of the 3rd-order NL susceptibility; and 
�3 is the 3PA coefficient related to the imaginary part of the 
5th-order NL susceptibility.

3  OA Z‑scan transmittance

In the OA Z-scan, the entire power that is transmitted 
through the sample is detected; therefore, the signal is not 
sensitive to the NL refractivity. To determine the sample 
transmittance, the spatial distribution of the laser beam and 
the temporal distribution of the laser pulse should be known.

3.1  Circular Gaussian beam

Assuming that a circular Gaussian beam propagates in the z 
direction, the electric field can be written as:

where w (z) = w0

(

1 + z2
/

z2
R

)1∕ 2 is the beam radius with 
w0 the beam waist radius, R(z) = z + z2

R

/

z is the wave front 
radius of curvature, zR = kw2

0

/

2 is the Rayleigh length and 
�(z, t) is a phase factor that is uniform in radial coordinates. 
E0(t) contains the on-focus temporal profile.

3.1.1  Two‑photon absorption (2PA)

2PA is an optical NL process in which two photons are 
simultaneously absorbed to excite the atom/molecule to a 
higher energy state. This process requires only a few fem-
toseconds, which is much less than the pulse duration of 
most laser pulses. According to [19], the intensity of a beam 
propagating through a medium showing 2PA is governed by

which has the following solution:

where Ie is the intensity at the exit surface of the sample, 
q (z, r, t) = � 2 I(z, r, t)Leff  , I is the intensity at the entrance 
face of the sample, and Leff = 1 − e−�0L

/

�0 is the so-called 
effective thickness, where L is the sample thickness and �0 
is the linear absorption coefficient. The power transmitted 
through the NL medium can be calculated by integrating the 

(10)E(r, z, t) = E0(t)
w0

w(z)
e−i�(z,t)eikze

ik
r2

2R(z) e
−

r2

w(z)2

(11)
dI

dz�
= −�0 I − �2 I

2

(12)Ie(z, r, t) =
I(z, r, t) e− � 0 L

1 + q(z, r, t)

intensity over the transverse plane. For a circular symmetric 
intensity profile, the exit power is

Separating the axial and transverse parts of the Gauss-
ian beam, I(z, r, t) = I0(z, t) exp(−2r

2
/

�2) , the transmitted 
power is obtained as

The normalized transmittance is defined as the quotient 
of the energy transmitted through the sample to the inci-
dent energy:

Assuming CW laser radiation or a top-hat (i.e., flat-
top) pulse shape, the normalized transmittance is easily 
obtained as

where q0 = �2 Leff I0 , I0 is the on-focus intensity and x = z∕ zR
.

Figure 5 shows the OA Z-scan traces for different q0. 
As q0 increases, the normalized transmittance decreases, 
approaching zero for very large values of q0.

(13)Pe = ∫
∞

0

I(z, r, t) e− � 0 L

1 + �2 I(z, r, t)Leff
2� r dr

(14)Pe(z, t) = Pi(z, t)
ln
(

1 + q0(z, t)
)

q0(z, t)
e− � 0 L

(15)T(z) =
∫ +∞

−∞
Pe(z, t) dt

∫ +∞

−∞
Pi(z, t) dt

(16)T(z) =
ln
(

1 + (q0
/

(1 + x2))
)

(q0
/

(1 + x2))
e− � 0 L

Fig. 5  OA Z-scan signals obtained using a CW circular Gaussian 
beam. They were plotted using Eq. (16) for different intensities lead-
ing to different q

0
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Assuming a Gaussian temporal intensity distribution, the 
normalized transmittance can be derived by calculating the 
following integral over time:

where � is the FWHM of the Gaussian pulse.
Figure 6 shows the OA Z-scan transmittance as a result 

of 2PA for different laser powers (i.e., different q0 ) when 
the medium is irradiated with a circular Gaussian beam of 
a pulsed laser emitting temporally Gaussian pulses. In the 
numerical calculation of Eq. (17), the integral was calculated 
over a time interval of −5� to 5�.

The difference between the normalized transmittance 
indicated for the same q0 in Figs. 5 and 6 reflects the defini-
tion of I0 in q0 = �2 Leff I0 . In Eq. (16), I0 is defined as the 
on-focus intensity of a CW laser beam, whereas in Eq. (17), 
it is defined as the peak on-focus intensity of a pulsed laser 
beam having temporally Gaussian pulses. I0 in the CW case 
corresponds to the time-averaged on-focus intensity for 
Gaussian pulses given by ⟨I(t)⟩ = I0

�
√

2 . Figure 7 shows a 
comparison between the normalized transmittance of the OA 
Z-scan assuming the same q0 = 1 obtained for the CW and 
pulsed lasers. This difference is understood as the conse-
quence of the definition of I0 for CW and pulsed lasers.

It is not straightforward to fit Eq. (17) to the experimen-
tal Z-scan data to extract the 2PA coefficient. However, 
ln(1 + q0(z, 0) exp(− 4 ln 2 t 2

/

� 2)) can be expanded using 
Taylor series expansion, which converges at the limit of 

(17)

T(z) =

1

( q0∕ (1+x2))
∫ +∞

−∞
ln

(

1 + ( q0
/

(1 + x2)) e
− 4 ln 2

t 2

� 2

)

dt

∫ +∞

−∞
e
− 4 ln 2

t 2

� 2 dt

q0 < 1 . Therefore, the OA normalized transmittance for the 
2PA process is derived as

where q0 = �2Leff I0 , �2 denotes the 2PA coefficient and I0 
denotes the peak on-focus intensity, which is, for temporally 
Gaussian pulses, given by I0 = 4

√

ln 2 Ep

�

�3∕ 2w2
0
� , with 

Ep being the pulse energy, w0 being the beam waist radius 
and � being the pulse duration.

The limit of q0 < 1 corresponds to T(0) > 0.765 . In other 
words, Eq. (18) can be used to determine the 2PA coef-
ficient when the maximum normalized absorbance occur-
ring at the focus, 1 − T(0) , is less than 0.235. Figure 8 
shows how the Taylor series of ln(1 + q0) deviates from the 
original function (i.e., becomes divergent) as q0 increases 
to quantities greater than unity.

Figure 9 indicates the normalized transmittance given 
in Eq. (18) for different numbers of first terms ranging 
from the first 2 terms (dashed red curve) to the first 12 
terms, all of which are plotted with the same q0 = 1 . The 
solid blue curve shows the numerical calculations acquired 
from Eq. (17).

Equation (18) represents an infinite summation. In prac-
tice, one has to keep a finite number of the first terms 
of such a summation. According to Fig. 10, in which the 
extracted q0 is shown versus different numbers of the first 
terms in Eq. (18), it is recommended to retain more than 
10 terms of Eq. (18) to extract a precise value for q0 within 
1% error.

(18)T(z) =

∞
∑

n= 0

(

−q0
) n

(n + 1) 3∕ 2
(

1 + x2
) n

Fig. 6  OA Z-scan signals obtained using a circular Gaussian beam 
containing temporally Gaussian pulses. They were plotted using 
Eq. (17) over the time interval from −5� to 5� for different intensities 
leading to different q

0

Fig. 7  OA Z-scan for the same q
0
 . The dashed red curve for the CW 

laser using Eq.  (16) and the solid blue curve for Gaussian pulses 
using Eq. (17)
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3.1.2  Three‑photon absorption (3PA)

The 3PA process involves excitation through the simul-
taneous absorption of three photons. In the presence of 
3PA, the intensity change versus propagation length is 
governed by

where �3 is the 3PA coefficient. Integrating over the entire 
length of the sample will lead to

(19)
dI

dz�
= −

(

�0 + �3I
2
)

I

where Ie is the exit intensity, p(z, r, t) =
√

2�3L
�
eff
I(z, r, t) and 

L�
eff

= (1 − e− 2 � 0 L)
/

2 � 0.
The power transmitted through the NL medium can be 

calculated by integrating the intensity over the transverse 
plane.

Assuming a CW or top-hat temporal distribution for laser 
pulses, the normalized transmittance, defined in Eq. (15), is 
derived as

where p0 =
√

2�3L
�
eff

I0 and I0 is the on-focus intensity.
Figure 11 shows the OA-normalized Z-scan traces of a 

medium showing 3PA using a CW laser beam with differ-
ent powers corresponding to different p0 values. The trans-
mittance at the focus decreases, approaching zero, as p0 
increases.

Assuming a Gaussian temporal distribution for laser 
pulses, the normalized transmittance is given by

(20)Ie(z, r, t) =
I(z, r, t)e−�0L

√

1 + p2(z, r, t)

(21)Pe(z, t) = Pi(z, t)
ln
�

p(z, t) +
√

1 + p2(z, t)
�

p(z, t)
e−�0L

(22)

TN(z) =

ln

(

(p0
/

(1 + x2)) +

√

1 + (p0
/

(1 + x2))2
)

(p0
/

(1 + x2))
e−�0L

Fig. 8  The dotted green curve showing the plot of ln(1 + q0) versus 
q0. The solid blue and dashed red curves show the sums of the first 16 
and 17 terms of the Taylor series, respectively.

Fig. 9  Comparison of the contributions of different numbers of terms 
(e.g., dashed red for the first two terms) in the summation in Eq. (18). 
The solid blue curve shows the numerical calculation using Eq. (17). 
All curves were plotted assuming q

0
= 1

Fig. 10  Extracted value of q
0
 obtained by fitting several numbers 

of the first terms in the summation in Eq.  (18). The q
0
 values were 

extracted from an OA Z-scan trace with T = 0.765 at the focal point 
corresponding to an actual value of q

0
= 1 , as seen for a large number 

of terms
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Figure 12 shows the numerical calculation of Eq. (23) for 
different values of p0 . Here, the difference between the plots 
in Figs. 11 and 12 reflects the difference in I0 for CW radiation 
and Gaussian pulses.

The integrand in Eq. (23) can be expanded as an infinite 
summation via Taylor series expansion. The resultant Taylor 
series would be convergent if p0 < 1 . Then, the OA Z-scan 

(23)T(z) =
2

√

ln 2 e− � 0 L

√

� �(p
0

�

(1 + x2)) ∫
+∞

−∞

ln

�

(p
0

�

(1 + x2)) e−4 ln 2 t
2∕ �2 +

�

1 + (p
0

�

(1 + x2))2 e−4 ln 2 t
2∕ �2

�

dt

Fig. 11  OA Z-scan transmittance in the case of the 3PA process 
for different CW laser powers corresponding to different p

0
 values 

according to Eq. (22)

Fig. 12  OA Z-scan transmittances in the case of the 3PA process 
applying different laser pulse energies corresponding to different p

0
 

values using Eq. (23)

normalized transmittance in the case of pure 3PA will be given 
by

3.1.3  Simultaneous 2PA and 3PA

To obtain the OA Z-scan transmittance of a medium show-
ing both 2PA and 3PA simultaneously, the following dif-
ferential equation must be solved:

There is no analytical solution to Eq.  (25). when �2 
and �3 are both nonzero. Solving Eq. (25) in the case of 
�3 = 0 leads to Eq. (18), and in the case of �2 = 0 leads 
to Eq.  (24). Assuming weak nonlinearity, it is reason-
able to retain only the first two terms of these aforemen-
tioned equations; thus, the normalized absorbance (i.e., 
A = 1 − T  ) for 2PA and 3PA are given by

Based on this approximation, Kessi and Naima [82, 
111] proposed the superposition of the contributions of 
2PA and 3PA. Thus, in the case of simultaneous 2PA and 
3PA, the normalized transmittance can be given as

Another approximate approach was proposed by Gu 
et al. [80]. They introduced an empirically determined 

(24)T(z) =

∞
∑

m= 0

(−1)mp 2m
0

(2m + 1) ! (2m + 1) 1∕ 2(1 + x2) 2m

(25)
dI

dz�
= −

(

�0 + �2I + �3I
2
)

I

(26)A2p(x) =
q0

2
√

2 (1 + x2)

(27)A3p(x) =
p 2
0

6
√

3 (1 + x2) 2

(28)T(x) = 1 −
q0

2
√

2 (1 + x2)
−

p 2
0

6
√

3 (1 + x2) 2

coupling equation so that the normalized transmittance 
for simultaneous 2PA and 3PA can be given by

where T2p(q0, x) and T3p(p0, x) are the normalized transmit-
tances for 2PA and 3PA, respectively, and F(q0, p0, x) is 
introduced as the coupling factor obtained empirically as

(29)T2p,3p(q0, p0, x) = T2p(q0, x)T3p(p0, x)F(q0, p0, x)
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3.1.4  Multiphoton absorption (MPA)

The OA Z-scan transmittance can be derived for higher 
orders of NL absorption. To do so, the following differen-
tial equation must be solved.

(30)

F(q0, p0, x) = 1 +

q0

(1+x2)

[

0.339 sin(0.4498
p2
0

(1+x2)2
) − 0.029

]

1 + 0.966
q0 p

−1.436
0

(1+x2)3

where �M is the MPA coefficient.
The irradiance at the exit surface of a thin sample is given 

in [11] as

As described in Sects. 3.1.1 and 3.1.2, the intensity is 
then integrated over space and time to calculate the total 
energy exiting the sample.

Correa et al. [112] derived the OA Z-scan normalized 
transmittance up to 5PA. Gu et al. [113] calculated the OA 
Z-scan normalized transmittance for higher orders of NL 
absorption for one MPA process (e.g., 2PA, 3PA, etc.) and 
for the concurrence of two consecutive processes (e.g., 2AP 
and 3PA). For the case when only one MPA process occurs 
and under the assumption of (M − 1)𝛼MI

M−1
0

L
(M)

eff
< 1 , the 

OA Z-scan normalized transmittance is given by

where L(M)

eff
=
{

1 − exp
[

−(M − 1)�0L
]}/

(M − 1)�0 and

and

(31)
dI

dz�
= −

(

�0 + �MI
M−1

)

I

(32)Ie(z, r, t) =
I(z, r, t)e−�0L

[

1 + (M − 1)�M
[

(1 − exp(−(M − 1)�0L))
/

(M − 1)�0
]

IM−1(z, r, t)
]1∕ (M−1)

(33)

TMPA(z) = 1 +

∞
∑

k=1

(−1)k
(

(M − 1)�MI
M−1
0

L
(M)

eff

)k

k !
[

(1 + x2)M−1
]k

Wk Fk

(34)Wk =

[

k−1
∏

n=0

(

1

M − 1
+ n

)

]2/[

k−1
∏

n=0

(

M

M − 1
+ n

)

]

where h(t) denotes the temporal profile of the laser pulse.
A s s u m i n g  a  G a u s s i a n  t e m p o r a l  p ro f i l e , 

Fk = 1
/

((M − 1)k + 1)1∕ 2 . Therefore, in the case of Gauss-
ian pulses, the OA Z-scan normalized transmittance for the 
4PA and 5PA to the 3rd-order approximation can be written 
as

Figure 13 illustrates a comparison between the normalized 
transmittance of the OA Z-scan for different orders of MPA 
given by Eq. (33) assuming temporally Gaussian pulses. The 
higher the order of the MPA is, the narrower the Z-scan signal.

(35)Fk = ∫
+∞

−∞

h(t)Mk−k+1dt

/

∫
+∞

−∞

h(t)dt

(36)

T4PA(z) = 1 −
�4I

3
0
L
(4)

eff

4
√

4 (1 + x2)3
+

2
�

�4I
3
0
L
(4)

eff

�2

7
√

7 (1 + x2)6
−

14
�

�4I
3
0
L
(4)

eff

�3

10
√

10 (1 + x2)9

(37)
T5PA(z) = 1 −

�5I
4
0
L
(5)

eff

5
√

5 (1 + x2)4
+

5
�

�5I
4
0
L
(5)

eff

�2

18
√

9 (1 + x2)8
−

15
�

�5I
4
0
L
(5)

eff

�3

26
√

13 (1 + x2)12

3.1.5  Saturable absorption (SA)

SA describes the saturation of linear absorption leading to a 
decrease in the linear absorption coefficient with increasing 

Fig. 13  Comparison between the normalized transmittance of the OA 
Z-scan for different orders of MPA using Eq.  (33) assuming tempo-
rally Gaussian pulses
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intensity. This is considered an NL optical phenomenon since 
the absorption coefficient shows intensity-dependent behavior. 
SA occurs at the near resonance when the absorber is irradi-
ated with high-intensity laser beams. The following equations 
have been used in the literature for the saturation of the first 
excited state [114].

where �0 denotes the weak-field absorption coefficient and 
Is is the saturation intensity (i.e., the intensity at which the 
linear absorption coefficient drops to half of its weak-field 
value).

Equation (38) represents the intensity dependence of the 
absorption coefficient for the saturation of a homogeneously 
broadened line [115], whereas Eq. (39) is used for the case of 
an inhomogeneous broadened line [116]. Equation (40) was 
proposed by Samoc et al. [117] since their measured results 
were not consistent with the models presented in Eqs. (38) 
and (39). They found that their experimental curves were well 
reproduced by Eq. (40). Later, Srinivas et al. [114] also found 
that Eq. (40) fits their experimental data better than Eqs. (38) 
and (39).

Gu et al. [118] derived the normalized transmittance of an 
OA Z-scan for a medium showing SA based on two models 
given in Eqs. (38) and (39).

where �(x, t) = I0(t)
/[

Is(1 + x2)
]

 , I0(t) is the on-focus inten-
sity and x = z∕ zR.

In the case of CW lasers I0(t) = I0 , however, when using a 
pulsed laser, one must calculate the time-averaged normalized 
transmittance via the following equation.

The first 5 terms of qm(�) in Eq. (41) for SA based on the 
model presented in Eq. (38) are given as:

(38)�(I) =
�0

1 + I
/

Is

(39)�(I) =
�0

(1 + I
/

Is)
1∕ 2

(40)�(I) =
�0

1 + (I
/

Is)
1∕ 2

(41)T(z, t) = e�0L

[

1 +

∞
∑

m=1

(−�0L)
m

m !
qm(�)

]

(42)T(z) =
∫ +∞

−∞
T(z, t) I(t) dt

∫ +∞

−∞
I(t) dt

(43)q1 =
ln(1 + �)

�

The first 5 terms of qm(�) in Eq. (41) for SA based on the 
model presented in Eq. (39) are given as:

(44)q2 =
1

2�

[

1 −
1

(1 + �)2

]

(45)q3 =
1

12�

[

1 −
1 − 8�

(1 + �)4

]

(46)q4 =
2 − 3�

2(1 + �)6

(47)q5 =
1

120�

[

1 + 128� − 872�2 + 576�3

(1 + �)8
− 1

]

(48)q1 =
2

�

[

(1 + �)1∕ 2 − 1
]

(49)q2 =
1

2(1 + �)
+

ln(1 + �)

2�

(50)q3 =
2

5�

[

1 −
1

(1 + �)5∕ 2

]

(51)q4 =
1

24�

[

1 −
1 − 20�

(1 + �)4

]

(52)q5 =
1

231�

[

−2 +
2 + 242� − 495�2

(1 + �)11∕ 2

]

Fig. 14  OA Z-scan traces for SA at different intensities using 
Eq.  (38). The ratio of on-focus intensity to saturation intensity was 
varied from 0.5 to 8
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Figure  14 shows OA Z-scan traces at different on-
focus intensities for SA based on the model presented in 
Eq. (38). In this simulation, it is assumed that �0L = 1 . As 
the on-focus intensity increases, the SA process becomes 
predominant, leading to a higher transmittance; that is, the 
medium becomes more transparent.

For some media at some wavelengths, SA may occur 
simultaneously with 2PA. For the concurrence of SA and 
2PA, the optical intensity change is governed by the fol-
lowing differential equation.

Wang et al. [119] derived the normalized transmittance 
of an OA Z-scan for a medium showing simultaneous 2PA 
and SA, given by:

where �(x, t) = I0(t)
/[

Is(1 + x2)
]

 , I0(t) is the on-focus inten-
sity and x = z∕ zR.

The first two terms of qm(�) and q�
m
(�) are given as 

follows.

(53)
dI

dz�
= −

(

�0

1 + I
/

Is
+ �2I

)

I

(54)

T(z, t) = exp(�0L)

[

1 +

∞
∑

m=1

(−�0L)
m

m !
qm(�) +

∞
∑

m=1

(−�2LIs)
m

m !
q�
m
(�)

]

(55)q1(�) = ln(1 + �)∕�

(56)q2(�) =

[

−�0
/

2(1 + �)2
]

+ 2�2Is(� − ln(1 + �))

�0�

(57)q�
2
(�) = �∕2

In Fig. 15, the OA Z-scan normalized transmittance for 
different on-focus intensities was plotted using Eq. (54). 
These results were obtained assuming �0L = 0.2 and 
�2Is∕�0 = 0.04 . In this figure, the competition between two 
NL phenomena is clearly demonstrated. Each trace consists 
of an overall peak indicating the SA behavior inside which 
there could be a valley as an indicative of the 2PA process. 
By moving the sample toward the focal point, the intensity 
within the focal volume increases, leading to higher satura-
tion, which results in transmittance enhancement and thus 
results in a symmetric peak. For higher on-focus intensities, 
as the sample moves closer to the focal point, the intensity 
within the focal volume becomes strong enough to trigger 
the 2PA, leading to a decrease in the transmittance, manifest-
ing as a valley at the focal point. This behavior is considered 
a switch from SA to 2PA when the intensity of radiation is 
increased. Performing the OA Z-scan with a higher peak 
on-focus intensity reveals that the 2PA monotonously over-
comes the SA process around the focal point; that is, the 
depth of the central valley increases, and ultimately, the 2PA 
process becomes predominant so that the normalized trans-
mittance drops below unity at the focal point.

The 2PA process itself could be saturated. To determine 
the OA Z-scan transmittance for such a process, the fol-
lowing differential equation must be solved. The detailed 
calculation can be found in [120].

(58)q�
2
(�) =

[

�0
/

(1 + �)
]

+ �0 ln(1 + �)

�2Is�
+

2�2

3

(59)
dI

dz�
= −�0I −

�2I
2

1 + I
/

Is

Fig. 15  OA Z-scan trace showing the competition between SA and 
2PA based on Eq. (54)

Fig. 16  OA Z-scan trace for saturation of 2PA. The results were cal-
culated numerically using Eq. (59)
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Figure  16 represents the numerically calculated OA 
Z-scan transmittance for saturation of 2PA at different 
applied I0 values, assuming �2Is = 0.1 . However, as the 
intensity increases, the signal becomes broader, and the 
depth of the trace does not increase correspondingly to that 
in the absence of saturation.

The detailed calculation for the simultaneous saturation 
of 2PA and 3PA can be found in [121].

3.2  Astigmatic Gaussian beams

A circular Gaussian beam has the same beam waist radius in 
all directions and a single beam waist position. Although an 
elliptical Gaussian beam has a single beam waist position, the 
beam waist radii in two orthogonal directions (x, y) are not the 
same, as shown in Fig. 17. An elliptical beam may undergo 
stigmatism, leading to two separate foci, each corresponding 

to the minimum beam radius in transverse dimensions (i.e., the 
x- and y-axes), as shown in Fig. 18.

The electric field of an astigmatic Gaussian beam is given 
by [115]

where
(60)

E(x, y, z, t) = Emax(t)

√

w0x

wx(z)
w0y

wy(z)
e−i� e i k z e i k

x 2

2R x (z)

e−
x 2

wx (z) 2 e
i k y 2

2R y (z) e
− y 2

wy(z) 2

(61)wx(z)
2 = w 2

0x
(1 + X2)

(62)wy(z)
2 = w 2

0y
(1 + Y2)

Fig. 17  Beam radius of a 
focused elliptical Gaussian 
beam with an ellipticity of 
w
0y

/

w
0x = 2 having the same 

foci. The dashed red curve 
represents the beam radius in 
the y direction with a Rayleigh 
length of 4 mm, and the solid 
blue curve represents the beam 
radius in the x direction with a 
Rayleigh length of 1 mm [110]

Fig. 18  Beam radius of a 
focused astigmatic Gauss-
ian beam with an ellipticity 
of w

0y

/

w
0x = 2 and a waist 

separation of 4 mm. The dashed 
red curve represents the beam 
radius in the y direction with a 
Rayleigh length of 4 mm, and 
the solid blue curve represents 
the beam radius in the x direc-
tion with a Rayleigh length of 
1 mm
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where X and Y  are dimensionless geometric parameters 
defined as X = (z − z0x)

/

zRx and Y = (z − z0y)
/

zRy , respec-
tively, in which z0x,0y is the location of the waist, ZRx,Ry is the 
Rayleigh length and w0x, 0y is the beam waist radius of the 
laser beam. The subscripts x and y for all parameters refer 
to the transverse directions of the x and y axes, respectively.

The beam waist positions of an astigmatic Gaussian beam 
focused by a spherical lens are given by

where f  denotes the focal length of the focusing lens and 
the waist positions are measured with respect to the focus-
ing lens location.

3.2.1  Two‑photon absorption

The effect of beam ellipticity and astigmatism on the Z-scan 
trace was investigated in [70, 71, 75, 76, 82, 111]. Mian et al. 
[75, 76] derived the OA Z-scan transmittance for astigmatic 
Gaussian beams. The calculation of the power transmitted 
through the sample would be more convenient if the inten-
sity is written in polar coordinates.

Then, the power is derived by calculating the following 
integral.

where

Thus, for the case of CW lasers or flat-top pulses, the OA 
Z-scan normalized transmittance is derived as

(63)Rx(z) = zRx X
(

1 +
1

X2

)

(64)Ry(z) = zRy Y
(

1 +
1

Y2

)

(65)� =
1

2
tan−1(X) +

1

2
tan−1(Y)

(66)z0x,0y =
f

1 +
f 2

z2
Rx,Ry

(67)

I(r, �, z, t) =
2P(t)

� wx(z)wy(z)
exp

[

− 2r2

(

cos2 �

w2
x

+
sin2 �

w2
y

)]

(68)Pe(z, t) = ∫
∞

0 ∫
2�

0

I(r, �, z, t) e− � 0 L

1 + �2 I(r, �, z, t)Leff
r dr d� = Pi(z, t)

ln
(

1 + q0(z, t)
)

q0(z, t)
e− � 0 L

(69)q0(z, t) =
�2Leff 2P(t)

�wx(z)wy(z)

where

in which qmax = �2 Leff Imax and Imax = 2P
/

�w0xw0y with P 
the laser power. Note that Imax is merely a definition; it does 
not represent the on-focus intensity.

In the general case of astigmatic beams, the on-focus 
intensity can be obtained from

When Gaussian pulses are used and under the assump-
tion of qmax < 1 , the normalized transmittance can be ana-
lytically calculated via the following summation:

In Fig. 19, the OA Z-scan transmittance for an elliptical 
beam with different ellipticities ( e = w0y

/

w0x ) was plotted 
using Eq. (73). A higher ellipticity leads to a larger beam 
size at the focus, resulting in less on-focus intensity and 
consequently weaker 2PA.

(70)TN(z) =
ln
(

1 + q0(z)
)

q0(z)
e− � 0 L

(71)q0(z) =
qmax

(1 + X2)1∕ 2(1 + Y2)1∕ 2

(72)
I0 =

2P

w0x

(

1 +
z2
0x

z2
Rx

)1∕ 2

w0y

(

1 +
z2
0y

z2
Ry

)1∕ 2

(73)T(z) =

∞
∑

n= 0

(−qmax)
n

(n + 1) 3∕ 2 (1 + X2) n∕ 2 (1 + Y2) n∕ 2

Fig. 19  The effects of beam ellipticity on an OA Z-scan signature 
using Eq. (73)
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In Fig. 20, the OA Z-scan transmittances for beams with 
different ellipticities and astigmatisms are compared. The 
OA transmittance is asymmetric when an astigmatic beam 
is used for the Z-scan experiment.

3.2.2  Multiphoton absorption

According to the results in [82, 111], one can also use 
Eq.  (33) for an astigmatic beam by replacing 
[

(1 + X2) (1 + Y2)
]1∕ 2 instead of (1 + x2) . Hence, the nor-

malized transmittance for the OA Z-scan using astigmatic 
beams with a Gaussian temporal profile under an approxi-
mation of (M − 1)𝛼MI

M−1
0

L
(M)

eff
< 1 is given by:

where M denotes the order of the MPA and Wk and Fk are 
given in Eqs. (34) and (35), respectively.

4  CA Z‑scan

In this section, the normalized transmittance of CA Z-scan, 
using various spatial profile laser beams and different tem-
poral profile laser pulses is derived for different orders of 
optical nonlinearity.

(74)T(z) = 1 +

∞
∑

k=1

(−1)k
(

(M − 1)�MI
M−1
max

L
(M)

eff

)k

k !
[

(1 + X2)M−1(1 + Y2)M−1
]k∕ 2

Wk Fk

To estimate the CA Z-scan trace, the far-field pattern of 
the beam at the aperture plane should be calculated. This 
can be performed through different methods, such as the 
zeroth-order Hankel transformation or the Fresnel diffrac-
tion integral or integral theorem of Helmholtz and Kirchhoff. 
The Kirchhoff diffraction integral is derived by exploiting 
Green’s second identity given by

The Helmholtz equation for propagation waves in free 
space is given by

Therefore, the Green’s function fulfilling Eq. (75) can be 
written as

The solution to Eq. (77) can be given by

By substituting Eq. (78) into the left side of Eq. (75), the 
electric field distribution on the observation plane can be 
calculated using the following:

Equation (79) represents the integral theorem of Helm-
holtz and Kirchhoff [122], which is calculated over the plane 
of the laser beam cross section. Henceforth, we refer to this 

(75)∫V

(

E(r�) ∇2G(r�, r�) − G(r�, r�) ∇2E(r�)
)

dv = ∮S

(

E(r�)
�G(r�, r�)

�n
− G(r�, r�)

�E(r�)

�n

)

ds

(76)∇2E(r�) + k2 E(r�) = 0

(77)∇2G(r�, r) + k2 G(r�, r) = −�(r� − r)

(78)G(r�, r) =
exp (ik|

|

r⃗� − r⃗|
|

)

4𝜋|
|

r⃗� − r⃗|
|

(79)E(r) = ∫s

(

E(r�)
�G(r�, r)

�z
− G(r�, r)

�E(r�)

�z

)

ds

Fig. 20  Effect of astigmatism on the Z-scan trace using Eq. (73). The 
solid blue curve represents the Z-scan of a circular Gaussian beam, 
the dashed red curve represents an elliptical beam with an ellipticity 
of 2, and the dotted green curve represents an astigmatic beam with 
an ellipticity of 2 and a beam-wait separation of 4 mm

Fig. 21  Schematic illustration of the diffraction and observation 
planes along the reference frame
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as the Kirchhoff diffraction integral. Figure 21 schematically 
illustrates the diffraction and observation planes.

In the CA Z-scan experiment, E(r�) is the electric field 
on the exit surface of the sample ( x′y′ - plane ) given by 
Eq. (83), and E(r) is the electric field distribution on the 
aperture plane ( xy - plane ), via which the intensity distribu-
tion on the aperture plane and then the power transmitted 
through the aperture can be calculated.

4.1  Circular Gaussian beams

The optical nonlinearity depends strongly on the laser beam 
intensity. The spatial distribution of the laser power determines 
the intensity at each point. With respect to symmetricity, it is 
essential to know whether the beam is circular or, to some 
extent, elliptical and whether it is astigmatic. The power den-
sity function should also be known, for instance, whether it is a 
top hat or Gaussian shape. In this section, a circular laser beam 
with a Gaussian spatial intensity distribution is assumed to be 
used for the CA Z-scan experiment to determine the nonlinear 
refractivity originating from pure 3rd-order, pure 5th-order or 
concurrent 3rd- and 5th-order nonlinearity.

4.1.1  Pure 3rd‑order NL refractivity

In the case of cubic nonlinearity, the local refractive index of 
the medium, through which an intense laser beam is traveling, 
scales linearly with light intensity n(I) = n0 + n2I with n2 , the 
NL refractive index. This behavior leads to the creation of a 
convergent lens if n2 possesses a positive sign and, inversely, 
a divergent lens if n2 possesses a negative sign. These effects 
are known as self-focusing and self-defocusing, respectively.

If the medium length is small enough that changes in the 
beam diameter within the medium due to either diffraction or 
NL refraction can be neglected, the medium is regarded as a 
thin sample. In the thin sample approximation, the amplitude 
of the electric field changes only due to absorption, and the 
phase of the electric field changes due to the NL refraction 
governed by the following couple of equations.

(80)
d(ΔΦ)

dz �
= k n2I

In the absence of NL absorption, α(I) remains a constant 
equal to the linear absorption coefficient.

Assuming a spatially circular Gaussian intensity distribu-
tion, the phase shift at any point on the wave front can be 
derived by solving Eqs. (80) and (81).

The complex electric field on the exit surface of the sample 
now contains an amplitude depletion factor as well as a NL 
phase shift. Therefore, using the notation used in Fig. 21, the 
electric field on the diffracting plane (i.e., sample position) is 
given by:

The electric field pattern on the aperture can be numerically 
calculated using the Kirchhoff diffraction integral (Eq. (79)) 
precisely or using the Fresnel diffraction integral within the 
paraxial approximation given by

where r =
√

x2 + y2  and d = (za − z) , where za is the posi-
tion of the observation plane (i.e., aperture plane) and z 
denotes the position of the diffracting plane (i.e., sample 
position) in the Z-scan experiment.

A possible analytical solution to Eq. (84) proposed by 
Weaier et al. [123] is to decompose the complex electric 
field at the exit plane of the sample into a summation of 
Gaussian beams by expanding the NL phase term, eiΔΦ , 
using Taylor series expansion. That is,

where ΔΦ0(t) = k n 2 I 0(t)Leff  is the on-focus phase shift 
with k being the wavenumber and x = z∕ zR.

This method is known as Gaussian decomposition (GD) 
since Eq. (85) represents a summation of Gaussian beams 
with different complex amplitudes and different beam radii.

Using the GD approach, the electric field exiting the sam-
ple is given by

The intensity distribution on the aperture plane located at 
a distance d from the sample can be calculated by substitut-
ing Eq. (86) into Eq. (84) [19]. That is,

(81)
dI

dz�
= − �(I) I

(82)ΔΦ(r�, t) = k n 2 Leff I(r
�, t)

(83)Ee(r
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−
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[

w(z) 2∕ (2m+ 1)
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where

The normalized transmittance of the CA Z-scan is 
defined in [19] as

where in Eq.  (94), the numerator represents the energy 
transmitted through the aperture in the presence of the NL 
medium, and the denominator represents the energy trans-
mitted through the same aperture in the absence of the NL 
medium.

In terms of the electric field amplitude on the aperture 
plane, the normalized transmittance is given by

where ra is the aperture radius.
Assuming a very small aperture centered on the optical 

axis (i.e., r = 0 ), the on-axis normalized transmittance for 
temporally top-hat pulses or CW laser radiation is calcu-
lated as:

(87)Ea(r, t) = E 0(z, t) e
i kd e

−
1

2
�0 L

∞
∑

m=0

[

1
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× e
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w 2
m × e−i �m

]

(88)w 2
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d 2
m

)

(89)w 2
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d
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k w 2
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2

(92)Rm = d

⎛
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⎝
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g
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d2

d2
m
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⎟
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(93)�m = tan − 1
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(94)T(z) =
∫ +∞

−∞
P(t, ΔΦ(t)) dt

∫ +∞

−∞
P(t, ΔΦ = 0) dt

(95)T(z) =
∫ +∞

−∞
∫ ra
0

|

|

Ea(r, t,ΔΦ(t))|
|

2
r dr dt

∫ +∞

−∞
∫ ra
0

|

|

Ea(r, t,ΔΦ = 0)|
|

2
r dr dt

In the limit of a small NL phase change, ΔΦ0 < 1 , only 
the first two terms of Eq. (96) are adequate to be retained. 
Therefore,

Thus, the CA Z-scan normalized transmittance as a 
function of the sample position is derived as:

where  ΔΦ0 = kn2Leff I0  ,  k  i s  the  wavenumber, 
Leff = (1 − exp(−�0L))

/

�0 is the effective length of the 
sample with L the sample length and �0 the sample linear 
absorption coefficient, I0 is the on-focus intensity and n2 is 
the NL refractive index.

Instead of top-hat pulses, if Gaussian pulses propagate 
through an instantaneously responding NL medium, the 
CA-normalized transmittance is derived as

(96)T(z,ΔΦ0) =
|

|

Ea(z, r = 0, t = 0, ΔΦ0)
|

|

2

|

|

Ea(z, r = 0, t = 0,ΔΦ0 = 0)|
|

2

(97)
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|

|
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(g + id
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d 0) + iΔΦ0(z)
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)

|

|

|

2

|

|

|

1
/
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/

d 0)
|

|

|

2

(98)T(z,ΔΦ0) = 1 +
4 xΔΦ0

(x2 + 1) (x2 + 9)

(99)T(z,ΔΦ0(0)) = 1 +
4 xΔΦ0(0)

√

2
�

x2 + 1
� �

x2 + 9
�

Fig. 22  The on-axis normalized transmittance of the CA Z-scan 
obtained from Eq. (98)
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where ΔΦ0(0) = kn2Leff I0(0) and I0(0) is the peak on-focus 
intensity.

According to Eqs. (98) and (99), which are derived under 
approximations of small apertures and small phase changes, 
the CA Z-scan signal is symmetric in two respects. First, the 
height of the peak is equal to the depth of the valley, and sec-
ond, the null point (i.e., the position at which the normalized 
transmittance returns to unity) occurs at the focus (Fig. 22). 
However, the numerical calculation reveals that the signal 
becomes more asymmetric as the phase change increases.

Equations (98) or (99) possess two extrema: a peak and 
a valley located symmetrically around the focus. The peak 
and valley positions and thus the peak-to-valley distance are 
given by

Therefore, the transmittance peak-to-valley difference is 
given by

(100)xm = ± 0.858 ⇒ Δz(p→v) = 1.717zR

(101)ΔT(p→v) = 0.406ΔΦ0

Fig. 23  On-axis transmittance peak-to-valley difference versus maxi-
mum on-focus phase change. The circle points represent the data cal-
culated numerically using the Kirchhoff diffraction integral, and the 
solid red curve shows a linear fit to the calculated data, with a slope 
of 0.406, as given in Eq. (101)

Fig. 24  CA normalized transmittance for different aperture transmit-
tances assuming ΔΦ

0
= 1 . The results were numerically calculated 

using Eq. (95)

Fig. 25  Transmittance peak-to-valley difference versus the aperture 
transmittance. The solid blue curve shows the numerical calculation 
using the Kirchhoff diffraction integral, and the dashed red curve 
indicates the empirical relation given by Eq. (102)

Fig. 26  Transmittance peak-to-valley difference versus ΔΦ
0
 for dif-

ferent aperture transmittances. The results were numerically calcu-
lated using Eq. (95)
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Figure 23 shows the transmittance peak-to-valley differ-
ence versus the maximum on-focus phase change for very 
small apertures.

Equation (101) was derived assuming a small aperture 
size as well as a small phase change. Figure 24 shows the 
numerically calculated CA normalized transmittance using 
Eq. (95) assuming a phase distortion of ΔΦ0 = 1 for differ-
ent aperture sizes of 0.01, 0.50 and 0.80. As the aperture 
size increases, the transmittance peak-to-valley difference 
decreases and finally vanishes (i.e., T(z) = 1 ) for very large 
apertures (i.e. no aperture), indicating no sensitivity with 
respect to self-lensing.

As illustrated in Fig. 24, the coefficient in Eq. (101) in 
general depends on the aperture size so that it decreases with 
increasing aperture size according to

where S = 1 − exp(−2r2
a

/

w2
a
) is defined as the aperture 

transmittance with ra the aperture radius and wa the beam 
radius on the aperture plane.

Figure 25 shows the transmittance peak-to-valley dif-
ference versus the aperture transmittance. The solid blue 
curve shows the results of the numerical calculations 

(102)ΔT(p→v) = 0.406 (1 − S)0.25ΔΦ0

using the Kirchhoff diffraction integral, and the dashed 
red curve indicates the plot of the empirical relation given 
by Eq. (102) for ΔΦ0 = 1.

Figure 26 illustrates the transmittance peak-to-valley 
difference versus the maximum on-focus phase change for 
different aperture transmittances. This figure reveals the 
linear dependency of ΔT  versus ΔΦ0 with decreasing slope 
as the aperture size increases.

Equation (98) reveals the effect of only the first-order of 
the intensity on the normalized transmittance. As the laser 
power increases, the effects of the second- and third-order 
intensities become more important. To extract the NL refrac-
tive index more precisely, higher order terms from Eq. (87) 
should be introduced into Eq. (96). The analytic result for 
the normalized transmittance of the CA Z-scan, corrected to 
the third-order in intensity, is found in [124] as:

According to Eq.  (98), as the first-order approxima-
tion, the null position occurs at the focus regardless of 
the laser beam intensity. However, Eq. (103) reveals that 
the normalized transmittance at the waist is affected by 
the intensity squared, leading to a value less than unity 
( T(0) = 1 − 20ΔΦ0

2
/

225 ) for both positive and negative 
NL refractivity. Thus, the null position shifts toward the pos-
itive/negative direction of the z-axis in the case of positive/
negative NL refractivity. Figure 27 represents the CA Z-scan 
traces calculated numerically using the Kirchhoff diffraction 
integral assuming ΔΦ0 = 1 for CW radiation. This figure 
explicitly illustrates the shift in the null position for both 

(103)T(z) = 1 +
4 xΔΦ0

(x2 + 1) (x2 + 9)
−

4ΔΦ0
2(5 − 3x2)

(x2 + 1)2 (x2 + 9) (x2 + 25)
−

32 xΔΦ0
3(11 − x2)

(x2 + 1)3 (x2 + 9) (x2 + 25)(x2 + 49)

Fig. 27  CA Z-scan traces for different signs of nonlinearity illustrat-
ing the shift of the null position. The normalized transmittance at 
the focus is numerically calculated T(0) = 0.911 based on Eq.  (94) 
assuming a phase change of ΔΦ

0
= 1

Fig. 28  CA Z-scan trace assuming a NL phase change ΔΦ
0
= � . The 

gray solid line represents the plot of Eq. (98), and the red solid line 
shows the plot of Eq. (103)
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positive and negative nonlinearities. Although the positions 
of the null, valley and peak of the Z-scan trace are shifted, 
the peak-to-valley separation remains nearly unchanged. For 
instance, in Fig. 27, the valley position is zv = −0.7 zR , and 
the peak position is zp = 1.02 zR such that Δzv→p = 1.72 zR 
is similar to that obtained for the case of a very small phase 
change.

In Fig. 28, the CA Z-scan transmittances for a phase shift 
of ΔΦ0 = � are plotted using Eqs. (98) and (103) for com-
parison. The solid blue curve was plotted based on Eq. (98) 

that includes the effect of only the first-order of intensity. 
Within such an approximation, the null position is zero (i.e., 
the waist position), and the peak and valley appear sym-
metrically around the waist position. Furthermore, the peak 
height is identical to the valley depth. The dashed red curve 
was plotted using Eq. (103), which contains the effect of 
intensity up to the third-order. As shown in Fig. 28, for a 
larger phase change, the CA Z-scan transmittance shows two 
specific characteristics: first, the positions of the null, valley 
and peak are shifted in the positive direction for positive 
nonlinearity, and second, the height of the peak is less than 
the depth of the valley. That is, the Z-scan is not symmetric 
with respect to either the baseline (i.e., T = 1 ) or the beam 
waist.

Figure 29 shows the CA Z-scan on-axis transmittance 
calculated numerically using Eq. (96) for different phase 
changes. This illustrates how the symmetricity of the Z-scan 
decreases as the phase changes increase.

Figure 30 shows the numerical calculation using the 
Kirchhoff diffraction integral assuming a beam waist radius 
of 20 µm and that the aperture is located 100 mm from the 
beam waist of a laser beam with a wavelength of 800 nm. 
This illustrates how the self-focusing effect alters the inten-
sity distribution on the far-field aperture by strengthening the 
convergence of the laser beam at the prefocal position and 
weakening the divergence of the laser beam at the postfocal 
position as the sample moves from the valley position to the 
null position and then to the peak position.

All the relations derived for CA Z-scan using CW lasers 
are also valid if pulsed lasers are used instead. In fact, the 
time-independent phase shift ΔΦ0 can be replaced by a 

Fig. 29  CA Z-scan on-axis transmittance for different phase changes 
numerically calculated using Eq. (96). The solid blue curve represents 
ΔΦ

0
= 0.25 , and the dashed red curve represents ΔΦ

0
= �

Fig. 30  Intensity distribution on the aperture plane for different sam-
ple positions. The solid blue curve shows the distribution when the 
sample is located at the peak position, and the dotted green curve 
shows the distribution when the sample is located at the valley posi-
tion. The dashed red curve shows the distribution when the sample is 
located at the null position. The results were numerically calculated 
based on Eq. (79)

Fig. 31  CA Z-scan on-axis transmittances for cubic nonlinearity 
showing a peak on-focus phase shift of ΔΦ

0
= ±1 induced by tempo-

rally Gaussian pulses. The results were numerically calculated using 
Eq. (94)
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t ime-averaged phase shif t ,  which is given by 
⟨ΔΦ(t)⟩ = ΔΦ0

�
√

2 for Gaussian pulses with ΔΦ0 , the 
peak on-focus phase shift. Figure 31 illustrates the CA 
Z-scan normalized on-axis transmittance numerically calcu-
lated based on Eq. (94) using Gaussian pulses inducing a 
peak on-focus phase change of ΔΦ0 = ±1.

4.1.2  Pure 5th‑order NL refractivity

The real part of � (5) gives the NL refractive index. The refrac-
tive index change arising from the 5th-order nonlinearity is 
proportional to the intensity squared through the following:

Under the assumption of negligible NL absorption, the 
following couple of differential equations give the NL phase 
change.

The total phase change for a beam exiting a sample of 
length L is derived as

(104)Δ n = n4I
2

(105)
dI

dz�
= −�0I

(106)
d(ΔΨ)

dz�
= kn4I

2

(107)ΔΨ(z, r�, t) =
ΔΨ0(t)

(1 + x2)2
e
−4

r�2

w(z)2

where x = z∕ zR and ΔΨ0(t) = kn4L
�
eff
I0(t)

2 in which, k is the 

wavenumber, L�
eff

= (1 − e−2�0L)
/

2�0 , and n4 is the 5th-order 
NL refractive index.

Now, the complex electric field exiting the sample is 
given by

It consists of three terms: the amplitude of the electric 
field at the sample position, the damping factor because 
of linear absorption and the term containing the NL phase 
distortion.

Figure 32 shows the CA normalized on-axis transmit-
tance assuming S = 0.01 and ΔΨ0 = ±0.25 calculated 
numerically using the Kirchhoff diffraction integral. In 
fact, the electric field distribution is first calculated numer-
ically using Eq. (79) for the case of 5th-order nonlinearity, 
and then the CA normalized transmittance is calculated 
numerically using Eq. (94).

Using the GD method, the electric field exiting the 
sample can be given by an infinite summation of Gauss-
ian beams with different beam radii and different complex 
amplitudes. That is,

Now, the electric field distribution on the aperture plane 
can be calculated analytically using the Fresnel integral. 
That is,

where

(108)Ee(z, r
�, t) = E(z, r�, t)e−
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2
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1
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1
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]m(
wm0
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e
ik

r2

2Rm e
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r2

w2m e−i�m

(111)w2
m0
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w(z)2

4m + 1

(112)g = 1 +
d
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(113)dm =
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⎡
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⎥
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Fig. 32  CA normalized on-ais transmittance calculated numerically 
using Eq. (94) for a medium showing 5th-order NL refractivity
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In the limit of a small NL phase change induced by a Gauss-
ian CW laser beam, the normalized transmittance for small 
apertures can be derived by substituting Eq. (110) into Eq. (95) 
and letting r = 0.

Within the far-field approximation ( d > z0 ), the normalized 
transmittance is derived as

In the case of utilizing temporally Gaussian pulses, the time 
averaged ⟨ΔΨ(t)⟩ should replace ΔΨ0; hence, the normalized 
transmittance is given by

where

(115)Rm = d

⎛

⎜

⎜
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m
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(117)T(z) =

|

|

|

|

1
/

(g + i
d

d0
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1
/

(g + i
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|

|

|

|

2

|

|

|

|
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/
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(118)T(z) = 1 +
8xΔΨ0

(x2 + 1)2(x2 + 25)

(119)T(z) = 1 +
8xΔΨ0

√

3(x2 + 1)2(x2 + 25)

The transmittance versus the sample position in the 
presence of 5th-order nonlinearity has the same qualitative 
features as that of the 3rd nonlinearity, namely, possessing 
two extrema; a peak followed by a valley indicating a self-
defocusing process ( n4 < 0 ); or a valley followed by a peak 
indicating a self-focusing process ( n4 > 0).

Within the approximation applied to derive Eq. (118), the 
Z-scan trace appears to be symmetric with respect to both 
the baseline and the beam waist. This means that the height 
of the peak is identical to the depth of the valley and that 
the peak and valley are equidistant from the focal point. The 
positions of the peak and valley can be obtained by solving 
the differential equation dT(x)∕dx = 0 . That is,

This gives the peak and valley positions as

Therefore, the peak-to-valley distance is calculated as

By substituting the peak and valley positions in Eq. (118), 
the transmittance peak-to-valley difference is obtained as

This provides a convenient estimation of the NL refrac-
tive index by measuring ΔTp→v without any need for an 

(120)ΔΨ0 = kn4Leff �I
2
0

(121)
(x2 + 1)2(x2 + 25) −

[

4x(x2 + 1)(x2 + 25) + 2x(x2 + 1)2
]

x = 0

(122)x = ±0.568

(123)Δzp→v = 1.135zR

(124)ΔTp→v = 0.205ΔΨ0

Fig. 33  The 0n-axis transmittance peak-to-valley difference versus 
the on-focus phase change. The circular dots were obtained numeri-
cally using Eq. (94), and the red solid line represents a linear fit with 
a slope of 0.205

Fig. 34  Transmittance peak-to-valley difference versus aperture 
transmittance assuming a phase distortion of ΔΨ

0
= 0.25 . The cir-

cles show the numerically calculated data using Eq.  (94), in which 
the electric field was calculated via Eq.  (79). The solid red curve 
indicates the best fit to the data, revealing the dependency, such as 
ΔTp→v = 0.205ΔΨ

0
(1 − S)0.236
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arduous process of fitting the theoretical curve to the experi-
mental data. Figure 33 illustrates the numerically calculated 
transmittance peak-to-valley difference versus the on-focus 
phase change assuming a very small aperture size, confirm-
ing the linear dependency given in Eq. (124).

Numerical calculations for larger apertures and greater 
phase changes reveal that the difference between the trans-
mittance peak and valley scales linearly with the on-focus 

phase change; however, the slope of the line depends on the 
aperture transmittance. The coefficient in Eq. (124) decreases 
with aperture size so that, in the limit of small phase distor-
tion, the aperture dependence can be approximated by mul-
tiplying the coefficient on the right-hand side of Eq. (124) by 
(1 − S)0.25 [19]. Numerical calculations with more rigorous 
precision show that the coefficient in Eq. (124) depends, 
in addition to the aperture transmittance, also on the phase 
change. For lower phase distortion ( ΔΨ0 = 0.25 ), Fig. 34 
shows the transmittance peak-to-valley difference versus the 
aperture transmittance, revealing an aperture size depend-
ence of ΔTp→v = 0.205ΔΨ0 (1 − S)0.236 , whereas for larger 
phase distortion ( ΔΨ0 = 1 ), the transmittance peak-to-valley 
difference versus aperture transmittance reveals an aperture 
size dependence of ΔTp→v = 0.212ΔΨ0 (1 − S)0.19 , as shown 
in Fig. 35. However, the aperture size dependency suggested 
in [19] can be used for any aperture size within a 5% accu-
racy for ΔΨ0 < 1.

As mentioned earlier, the same qualitative features are 
observed from the Z-scan traces regardless of the order of 
nonlinearity. Figure 36 shows a comparison between the CA 
Z-scan on-axis transmittance calculated for different phase 
changes ΔΨ0 = 0.25 and ΔΨ0 = �∕2 . It is illustrative that 
the Z-scan loses symmetricity for larger phase distortions.

Figure 37 shows the CA Z-scan transmittance for dif-
ferent aperture transmittances in the range of 0.01–0.90. 
Using a large size aperture leads to a smaller variation in 
the normalized transmittance. By enlarging the aperture 
size, the peak and valley both become weaker; however, 
the peak reduction is much more predominant, vanishing 
as the aperture transmittance increases to unity. Without 
any aperture ( ra = ∞ ⇒ S = 1 ), the effect of NL refrac-
tivity does not appear in the Z-scan transmittance since 
T(z) = 1 for all phase changes.

Fig. 35  Transmittance peak-to-valley difference versus the aper-
ture transmittance assuming a phase distortion of ΔΨ

0
= 1 . The cir-

cles show the numerically calculated data using Eq.  (94), in which 
the electric field was calculated via Eq.  (79). The solid red curve 
indicates the best fit to the data, revealing the dependency, such as 
ΔTp→v = 0.212ΔΨ

0
(1 − S)0.19

Fig. 36  CA Z-scan on-axis transmittance calculated numerically 
using Eq. (94) for different phase changes induced by 5th-order non-
linearity

Fig. 37  CA Z-scan in the case of 5th-order nonlinearity calculated 
numerically using Eq. (94) for aperture transmittance



Z-scan technique: a review from conventional Z-scan to white light Z-scan  Page 23 of 41   138 

4.1.3  Simultaneous 3rd‑ and 5th‑order NL refractivity

Assuming simultaneous 3rd- and 5th-order NL refractiv-
ity and negligible NL absorptivity, the Z-scan trace can be 
derived by solving the following couple of equations.

and

Now, the total phase changes due to the 3rd- and 5th-
order NL refractivity is given by

After substitution of the intensity in Eq. (127) The phase 
change is given as:

Thus, the complex electric field exiting the sample is 
given by

Using the GD method, the complex electric field exiting 
the sample is obtained as

where

Using the Fresnel integral, the electric field distribution 
in the far field is found as

where
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(

wmn0

wmn

)

e−i�mn =
1

g + i
d

dmn

Under the approximation of small phase distortion and 
small aperture size, the normalized transmittance of the CA 

(134)dmn =
kw2

mn0

2
=

d00

2m + 4n + 1

Z-scan obtained by the Gaussian CW laser beam is obtained 
as

Fig. 38  CA Z-scan on-axis transmittance for a medium possess-
ing both 3rd- and 5th-order nonlinearities simultaneously. Both the 
dashed red curve for positive nonlinearity and the solid blue curve for 
negative nonlinearity were calculated numerically using Eq. (94)
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Within the limit of the first-order approximation (i.e., 
ignoring ΔΦ2

0
 , ΔΨ2

0
 , ΔΦ0 ⋅ ΔΨ0 and higher order terms), the 

(135)T(z) =

|

|

|

|

1
/

(g + i
d

d00
) + i

ΔΦ0

1+x2

(

1
/
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d00
)
)

+ i
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1
/
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|

|

|

|

2

|

|

|

|

1
/
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d

d00
)
|

|

|

|

2

normalized transmittance of the CA Z-scan for the simul-
taneous presence of 3rd- and 5th-order NL refractivity is 
derived as

Within such an approximation, the Z-scan is symmetric 
with peak-to-valley separation given by

The transmittance peak-to-valley difference is obtained as

The numerical calculation using the Kirchhoff diffrac-
tion integral indicates that the Z-scan transmittance is 
never symmetric regardless of the order of the nonlinear-
ity. Figure 38 shows the numerically calculated normalized 
on-axis transmittance for a small aperture size and phase 
changes of ΔΦ0 = 0.5 and ΔΨ0 = 0.25 . This illustrates that 
the valley position is approximately zv = − 0.73 zR , and 

the peak position is approximately zp = + 0.82 zR , so that 
Δzp→v = 1.55zR . It is worth noting that the valley and peak 
positions shift toward the positive z-direction for positive 
nonlinearity (see Fig. 39) and vice versa. However, the dis-
tance between the valley and peak position remains almost 
constant (i.e., Δzp→v = 1.55zR ) and is independent of the 
amount of phase distortion.

Figure 40 shows the CA normalized on-axis transmittance 
obtained for different orders of NL refractivity. The inset 
clearly illustrates that the peak position occurs in each case.

Reference [81] shows the results of the analytical calcula-
tion of the Z-scan transmittance for a medium with simultane-
ous 3rd- and 5th-order NL refractivity in the presence of 2PA.

4.1.4  Simultaneous 3rd‑order NL refractivity 
and absorptivity

Depending on the laser intensity and laser wavelength used to 
perform the Z-scan, the NL absorption might be considerable 
and thus should be taken into account. The MPA leads to sup-
pressing the peak and enhancing the valley of the CA Z-scan 
transmittance, and the SA results in the opposite behavior. To 
determine the phase change in the presence of 2PA, the follow-
ing couple of differential equations must be solved [73, 74].

(136)T(z) = 1 +
4ΔΦ0x

(x2 + 1)(x2 + 9)
+

8ΔΨ0x

(x2 + 1)2(x2 + 25)

(137)Δzp→v = 1.44zR

(138)ΔTp→v = 0.398ΔΦ0 + 0.196ΔΨ0

Fig. 39  CA Z-scan on-axis transmittance for a medium possessing 
both 3rd- and 5th-order nonlinearities. The solid blue curve is the plot 
of Eq. (136), whereas the dashed red curve shows the results obtained 
from numerical calculations using Eq. (94)

Fig. 40  CA normalized on-axis transmittance for different orders of 
nonlinearity calculated numerically using Eq.  (94). The solid blue 
curve represents 3rd-order nonlinearity, the dashed red curve repre-
sents simultaneous 3rd- and 5th-order nonlinearity, and the dotted 
green curve represents 5th-order nonlinearity
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The solution of Eq. (139) yields the intensity within the 
medium given by

By substituting Eq. (141) in Eq. (140), the phase change 
of the electric field propagating through the medium of 
length L is derived as

(139)
dI

dz�
= −(�0 + �2I)I

(140)
d(ΔΦ)

dz�
= kn2I

(141)I(z�) =
�0I(z)e

−�0z
�

�0 + �2I(z) − �2I(z)e
−�0z

�

where q(z, r�, t) = �2I(z, r
�, t)Leff .

The complex electric field exiting the sample can be writ-
ten as:

where |
|

Ee(z, r
�, t)|

|

 is the amplitude of the electric field exiting 
the sample, defined as |

|

Ee(z, r
�, t)|

|

=

√

2Ie(z, r
�, t)

/

cn�0.
After substitution of the field amplitude and phase change 

from Eqs. (141) and (142) in Eq. (143), the exiting electric 
field is obtained as follows:

Using a binomial series to expand 
(

1 + q(z, r�)
)i

kn2

�2
−

1

2 leads 
to the following:

Using the Fresnel integral, the far-field pattern of the 
electric field is derived as

(142)ΔΦ(z, r�, t) =
kn2

�2
ln
[

1 + q(z, r�, t)
]

(143)Ee(z, r
�, t) = |
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|

eiΔΦ(z,r�,t)
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Fig. 41  CA Z-scan on-axis transmittances of various media with the 
same q

0
= 1 but different ΔΦ

0
 . The results were calculated numeri-

cally using Eq. (95), in which the electric field is given by Eq. (146)

Fig. 42  CA Z-scan on-axis transmittances of various media with the 
same ΔΦ

0
 but different q

0
 . The results were calculated numerically 

using Eq. (95), in which the electric field is given by Eq. (146)
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To calculate the on-axis (r = 0) transmittance for a small 
phase change (ΔΦ < 1), the first two terms in Eq. (146) are 
sufficient to be retained. Thus, the normalized transmittance 
assuming a cubic NL medium irradiated with a CW Gauss-
ian laser beam is given by

(147)T(z) = 1 +
4xΔΦ0 − q0(x

2 + 3)

(x2 + 1)(x2 + 9)

Letting q0 = 0 in Eq.  (147), it transforms to Eq.  (98) 
derived for pure refractivity in the case of cubic nonlinearity.

Unlike in the pure refractivity case, Eq. (147) gives, in 
two respects, an asymmetric trace. First, the peak height is 
no longer equal to the valley depth; the peak is suppressed, 
whereas the valley is enhanced. Second, the normalized 
transmittance at the focus is not unity but T0 = 1 − q0

/

3 . 
The latter, however, allows a readily estimation of the 2PA 
coefficient just by determining the normalized transmit-
tance at the focus through �2 = 3 (1 − T0)

/

Leff I0.
Depending on the ratio of ΔΦ0

/

q0 , there might be no 
null point, a single null point or even two null points 
observed in CA transmittance in the presence of 2PA. The 
critical ratio of ΔΦ0

�

q0 =
√

3
�

2 results in a situation in 
which only a single null point is observed at z =

√

3 zR 
(dashed red curve in Fig. 41). For Z-scan with the ratio 
ΔΦ0

�

q0 <
√

3
�

2 , no null point is observed (dotted green 
curve in Fig. 41). Figure 41 shows that for a Z-scan with 
a ratio of ΔΦ0

�

q0 >
√

3
�

2 , two null points occur at 

x = 2ΔΦ0

/

q0 ±

√

(2ΔΦ0

/

q0)
2 − 3 . An interesting case is 

ΔΦ0 = q0 in which the null positions occur at x = 1 (i.e., 
z = zR ) and x = 3 (i.e., z = 3zR ) (solid blue curve in 
Fig. 41).

The discussions above were concluded as an outcome 
of Eq. (147), which is valid for small values of ΔΦ0 and 
q0 . Numerical calculations using the Kirchhoff diffrac-
tion integral show that the real critical ratio of ΔΦ0

/

q0 , 
at which only a single null point is observed, is approxi-
mately 0.63 instead of 0.86.

Figure 41 shows the Z-scan normalized on-axis trans-
mittance of different cases showing the same q0 but differ-
ent ΔΦ0 . This figure illustrates how changing ΔΦ0 affects 
the Z-scan trace. A decrease in ΔΦ0 results in a V-shaped 
signal, which is a signature of the OA Z-scan for MPA 
absorption. It should be noted that for the case of ΔΦ0 = 0 , 
although the Z-scan signal is similar to that of the OA 
Z-scan, this transmittance was plotted assuming a small 
aperture; thus, the data are not expected to be exactly the 
same as those for the OA Z-scan transmittance.

The analytic result for the CA Z-scan transmittance cor-
rected to the second-order of irradiance [124] (i.e., retaining 
more terms in Eq. (146)) is given by

ΔΦ0 and q0 in Eqs. (147) and (148) can be replaced by the 
time-averaged ⟨ΔΦ0(t)⟩ = ΔΦ0

�
√

2 and ⟨q0(t)⟩ = q0

�
√

2 
for the case of using temporally Gaussian pulses in the 
Z-scan experiment.

(148)T(z) = 1 +
4xΔΦ0 − q0(x

2 + 3)

(x2 + 1)(x2 + 9)
−

4ΔΦ2
0
(5 − 3x2) + 8xΔΦ0q0(x

2 + 9) − q2
0
(40 + 17x2 + x4)

(x2 + 1)2(x2 + 9)(x2 + 25)

Fig. 43  Schematic diagram of the Z-scan setup for measuring both 
CA and OA traces simultaneously [110]

Fig. 44  Normalized Z-scan for on-axis transmittance CA (blue) using 
Eq.  (147), OA (red) using Eq.  (18) and the division of CA to OA 
(green) using Eq. (98)
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Figure 42 shows the normalized Z-scan on-axis transmit-
tance of different cases showing the same ΔΦ0 but different 
q0 . This illustrates how the increase in absorptivity influ-
ences the Z-scan signal. With increasing q0 , the peak is more 
suppressed, and the valley becomes much deeper.

Fitting Eq. (147) to the experimental data results in 
attaining both the NL refractive index n2 and 2PA coef-
ficient �2 simultaneously. However, another approach for 
determining the optical nonlinearities of those materials 
showing simultaneous NL refractivity and absorptivity 
was suggested by Bahae [19]. The Z-scan setup can be 
extended to include both CA and OA. As shown in Fig. 43, 
the laser beam transmitted through the sample is divided 
into two parts using a beam splitter. One part goes through 
a small aperture toward the diode Dc1 to measure the CA 
trace, and the other part is collected entirely by a lens and 
then detected by a diode Dc2 to measure the OA trace. The 
simple division of CA Z-scan transmittance to OA results 
in a new Z-scan trace showing pure NL refractivity. In 
Fig. 44, the solid blue curve is the CA Z-scan transmit-
tance, the dashed red curve indicates the OA Z-scan, and 
the dotted green curve represents the CA to OA trace. In 
conclusion, the NL refractive index n2 and the 2PA coef-
ficient �2 can be determined simultaneously by fitting 
Eq. (147) to the CA Z-scan (solid blue trace in Fig. 44) 
or separately by fitting Eq. (18) to the OA Z-scan (dashed 
red trace in Fig. 44) and Eq. (98) to the division of CA to 
OA Z-scan (dotted green curve in Fig. 44).

4.1.5  Simultaneous 5th‑order NL refractivity 
and absorptivity

In the presence of the 3PA, as a process of 5th-order non-
linearity, the following couple of differential equations 
should be solved to derive the phase change induced as a 
consequence of the 5th NL refractivity.

Equation (150) has already been solved in Sect. 3.1.2. 
Therefore, the total phase change during propagation 
through the medium of length L is given by

The complex electric field exiting the sample now con-
tains the NL phase distortion and the NL absorption reduc-
tion. That is,

After substituting I(z, r�, t) and ΔΦ(z, r�, t) from Eqs. (20) 
and (151) into (152), the electric field exiting the sample is 
given by

(149)
d(ΔΨ)

dz�
= kn4I

2

(150)
dI

dz�
= −(�0 + �3I

2)I

(151)ΔΨ(z, r�, t) =
kn4

2�3
ln
[

1 + p2(z, r�, t)
]

(152)Ee(z, r
�, t) =

√

Ie(z, r
�, t)

cn�0
⋅ eiΔΨ(z,r

�,t)

(153)Ee(z, r
�, t) = E(z, r�, t) ⋅ e−

1

2
�0L

[

1 + p2(z, r�, t)
](i

kn4

2�3
−

1

4
)Fig. 45  CA Z-scan on-axis transmittance for various media with the 

same p2
0
 but different ΔΨ

0
 . The results were calculated numerically 

using Eq. (95), in which the electric field is given by Eq. (155)

Fig. 46  CA Z-scan on-axis transmittance for various media with the 
same ΔΨ

0
 but different p2

0
 . The results were calculated numerically 

using Eq. (95), in which the electric field is given by Eq. (155)
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The term [1 + p2(z, r�, t)
](i

kn4

2�3
−

1

4
) in Eq.  (153) can be 

expanded using a binomial series. The result is

The electric field pattern in the far field can be obtained 
using the Fresnel integral. That is,

All parameters, such as Rm , dm , �m and wm , have already 
been defined through Eqs. (111) to (116).

In the limit of a small NL phase change, the on-axis elec-
tric field at the aperture plane can be obtained by letting 
r = 0 and retaining only the first two terms in Eq. (155). Fol-
lowing such an approximation and assuming CW radiation, 
the normalized transmittance for the case of CW radiation 
is derived as

where p2
0
= 2�3L

�
eff
I2
0
 and ΔΨ0 = kn4L

�
eff
I2
0
.

By setting p0 = 0 , Eq. (156) transforms to Eq. (118), 
which is derived for a medium with a negligible 3PA.

(154)Ee(z, r
�, t) = E(z, r�, t) e−

1

2
�0L

∞
∑

m=0

[

1

m!

(

iΔΨ(t)

(1 + x2)2

)m m
∏

n=1

(

1 + i
(4n − 3)�3

2kn4

)

]

e
−4m

r�2

w(z)2

(155)Ea(z, r, t) = E0(z, t)e
ikde

−
1

2
�0L

∞
∑

m=0

[

1

m!

(

iΔΨ(t)

(1 + x2)2

)m m
∏

n=1

(

1 + i
(4n − 3)�3

2kn4

)(

wm0

wm

)

× e
ik

r2

2Rm × e
−

r2

w2m × e−i�m

]

(156)T(z) = 1 +
8xΔΨ0 −

1

2
p2
0
(x2 + 5)

(x2 + 1)2(x2 + 25)

Unlike in the pure refractivity case, Eq. (156) gives an 
asymmetric trace. In the waist position, the normalized 
transmittance is not unity but T0 = 1 − p2

0

/

10 . This pro-

vides an opportunity to estimate the 3PA coefficient read-
ily by determining the normalized transmittance at the 

focus �3 = 10 (1 − T0)
/

2L�
eff
I2
0
.

There is  a  cr i t ical  s i tuat ion introduced by 
ΔΨ0

�

p2
0
=
√

5
�

8 in which only a single null position is 

observed at z =
√

5 zR(dashed red curve in Fig. 45). For 
the Z-scan with a ratio of ΔΨ0

�

p2
0
<
√

5
�

8 , no null posi-
tion is observed (solid blue curve in Fig. 45). However, a 

Z-scan with a ratio of ΔΨ0

�

p2
0
>
√

5
�

8 possesses two 

null points located at x = 8ΔΨ0

/

p2
0
±

√

(8ΔΨ0

/

p2
0
)2 − 5 . 

An interesting case is ΔΨ0

�

p2
0
=
√

3
�

3 , in which the null 

positions are obtained at x =
√

3
�

3 and x = 5
√

3 (dotted 
green curve in Fig. 45).

It is worth mentioning that the solid blue curve 
( ΔΨ0 = 0 ) in Fig. 45 is although a V-shaped signal similar 
to an OA Z-scan signal, it shows the normalized transmit-
tance through a small aperture; thus, it is not expected to 
be exactly the same as that measured in the OA Z-scan 
experiment.

Figure  46 shows the CA normalized transmittance 
for different cases with the same ΔΨ0 but different NL 
absorptivity. This illustrates that 3PA affects the shape 
and strength of the Z-scan signal. As shown in this figure, 
increasing the 3PA coefficient leads to the suppression of 
the peak and the deepening of the valley.

When using a pulsed laser with temporally Gaussian pulses, 
ΔΨ0 and p2

0
 in Eq. (156) should be substituted by the time-

averaged ⟨ΔΨ0(t)⟩ = ΔΨ0

�
√

3 and ⟨p2
0
(t)⟩ = p2

0

�
√

3.

4.2  Astigmatic Gaussian beams

In this section, an astigmatic laser beam is assumed to be 
used for the Z-scan experiment. The electric field of an ellip-
tic Gaussian laser beam, including the astigmatism, and the 
relevant parameters are given in Eq. (60) to Eq. (65).

Fig. 47  CA Z-scan on-ais transmittance using an astigmatic laser 
beam. The solid blue curve indicates the transmittance for the waist 
separation 4zRx , the dashed red curve indicates the waist separation 
of 5.6zRx , and the dotted green curve indicates the waist separation of 
8zRx . The results were calculated numerically using Eq. (95), in which 
the electric field was calculated numerically using Eq. (84)
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4.2.1  Pure 3rd‑order NL refractivity

Within the limit of a small phase change, the on-axis nor-
malized CA transmittance in the case of cubic nonlinearity 
assuming negligible NL absorption is given by [75, 87]

where p1 can take the values of ± 1. It takes the value of 1 
for (X + Y)(3 + XY) > 0 . Otherwise, it takes the value of − 1 
[87]. In Eq. (157), ΔΦmax = kn2Leff Imax where n2 is the 3rd-
order NL refractive index, Leff  is the effective length of the 
sample, and Imax = 2P

/

w0xw0y in which P is the laser power.
By setting X = Y  , Eq. (157) is transformed to Eq. (98), 

which is derived for a spherical Gaussian beam.
The position of the nulls can be found by letting T(z) = 1 

in Eq. (157). This leads to Y = −X or Y = −3∕X and thus 
to the following null positions

and

For a circular Gaussian beam, both Eqs. (158) and (159) 
give the same results, leading to a single null point located 
at the beam waist position. However, for an astigmatic beam, 
Eqs. (158) and (159) lead to different solutions, resulting in 

(157)T(z) = 1 + 2p1 ΔΦmax

�

√

(X2 + 9) (X2 + 1) (Y2 + 9) (Y2 + 1) − (X2 + 3) (Y2 + 3) + 4X Y

2 (X2 + 9) (X2 + 1) (Y2 + 9) (y2 + 1)

(158)znull =
z0x zRy + z0y zRx

zRy + zRx

(159)znull =
1

2

(

(z0x + z0y) ±
√

(z0x − z0y)
2 − 12 zRxzRy

)

two or even three null points. One of the null points is always 
calculated from Eq. (158). According to Eq. (159), there is a 

critical distance for the waist separation Δz0xy =
√

12zRxzRy  
for which the second null point occurs exactly at the middle 
of either focal point. For waist separations smaller than the 
critical distance, Eq. (159) results in a complex number, and 
thus, no additional null point is observed. However, for waist 
separations larger than the critical distance, Eq. (159) has 
two real answers, leading to two more null points appearing 
symmetrically with respect to the middle of the beam waist.

Figure 47 shows the CA Z-scan traces calculated using 
the Fresnel diffraction integral assuming that astigmatic laser 
beams have the same ellipticity of e = w0y

/

w0x = 1.5 and the 
same maximum phase change of ΔΦmax = 1.5 but different 
waist separations. The waists are located equidistant from the 
origin of the z-axis. The larger beam waist is placed before 
the origin; thus, the sample first encounters the larger beam 
size and then the smaller beam size, and therefore, the depth 
of the valley is less than the height of the peak in all traces 
in Fig. 47. For an ellipticity of e = 1.5, the critical separation 
√

12zRxzRy  is approximately 5.2 zRx . This value is, of course, 
not accurate since Eq. (157) was derived as the on-axis nor-
malized transmittance for small phase distortion. Accurate 
numerical calculations show that the critical waist separation 

Fig. 48  CA Z-scan slit and aperture transmittance for an astigmatic 
beam possessing an ellipticity of w

0y

/

w
0x = 4 and waist separation 

of 5zRx assuming a maximum phase change of ΔΦ
max

= 1.5 . Tx and Ty 
were both calculated numerically using Eq. (160)

Fig. 49  CA Z-scan on-axis transmittance using an astigmatic laser 
beam with an ellipticity of e = 1.5 and ΔΨ

max
= 2 for different focus 

separations. The solid blue curve indicates the transmittance for the 
waist separation of 5zRx , the dashed red curve indicates the waist 
separation of 6.2zRx and the dotted green curve indicates the waist 
separation of 10zRx . The results were calculated numerically using 
Eq. (95), in which the electric field was calculated numerically using 
Eq. (84)
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is 5.6 zRx for which two nulls are observed (dashed red curve in 
Fig. 47). In Fig. 47, the solid blue curve shows the Z-scan for 
an astigmatic beam with a waist separation of 4 zRx (less than 
the critical value); therefore, a single null point is observed. 
The dotted green curve, showing three null points, illustrates 
the CA Z-scan assuming an astigmatic beam with a waist sepa-
ration larger than the critical value ( Δz0xy = 8 zRx).

Huang [70, 71] examined a slit instead of a circular aper-
ture to measure the CA Z-scan transmittance in the x- and 
y-directions. In this case, the normalized transmittance through 
a long slit mounted perpendicular to the y-axis (x-axis) can be 
defined as follows instead of Eq. (95):

where y0 denotes the slit width in the y-direction.
Tx can be defined in a similar way. For elliptical beams 

without astigmatism, both Tx and Ty appears to be symmetric, 
although they show diverse peak-to-valley differences. It is 
obvious that the normalized transmittance of the slit in the 
direction with a smaller beam waist radius shows a larger peak-
to-valley difference. However, for an astigmatic beam, the 
transmittance of a slit, similar to the transmittance of a circular 
aperture, is also not symmetric. However, the slit transmittance 
in the direction with a smaller beam waist radius, which shows 
a larger peak-to-valley difference, is more symmetric than that 
of a circular aperture and thus more convenient and reliable for 
determining the NL refractive index.

Figure 48 shows the Z-scan transmittance numerically 
calculated using Eq. (160) for an astigmatic beam possessing 
an ellipticity of w0y

/

w0x = 4 and a waist separation of 5zRx 
assuming a maximum phase change of ΔΦmax = 1.5 . The solid 
blue curve shows the transmittance through a slit perpendicu-
lar to the x-axis, Tx , and the dashed red curve indicates Ty . The 
dotted green curve, denoted Tc , represents the circular aperture 
transmittance for comparison.

4.2.2  Pure 5th‑order NL refractivity

Within the limit of a small phase change, the on-axis normal-
ized CA transmittance in the case of 5th-order nonlinearity 
assuming negligible NL absorption is given by

where p2 can take the values of ± 1. It takes the value of 1 
for (X + Y)(5 + XY) > 0 . Otherwise, it takes the value of − 1 
[87]. In Eq. (161)ΔΨmax = kn4L

�
eff
I2
max

 , n4 is the 5th-order 

(160)Ty(z) =

∫ y0∕ 2

−y0∕ 2
∫ ∞

−∞
|

|

E(x, y, z,ΔΦ0)
|

|

2
dx dy

∫ y0∕ 2

−y0∕ 2
∫ ∞

−∞
|E(x, y, z, 0)|2 dx dy

(161)T(z) = 1 + 2p2 ΔΨmax

�

√

(X2 + 25) (X2 + 1) (Y2 + 25) (Y2 + 1) − (X2 + 5) (Y2 + 5) + 16X Y

2 (X2 + 25) (X2 + 1)2 (Y2 + 25) (Y2 + 1)2

NL refractive index, L′
eff

 is the effective length of the sample, 
and Imax = 2P

/

w0xw0y in which P is the laser power.
The position of the nulls can be found by letting T(z) = 1 

in Eq. (161). This leads to Y = −X or Y = −5∕X and thus 
to the following null positions:

and

Equation (162) is the same as Eq. (158), which gives a 
null point for any beam regardless of the degree of ellip-
ticity or astigmatism. For the circular and astigmatism-free 
beams, both Eqs. (162) and (163) give the same single 
null point occurring at the waist position. For a stigmatic 
beam, depending on the waist separation, Eq. (163) may 
yield a different solution. For a waist separation of less than 
√

20 zRxzRy  , there is no real answer, so no additional null is 
observed. For the waist critical separation of 

√

20 zRxzRy  , 
one additional null at the middle of the two waists is 
observed. If the waist separation is greater than 

√

20 zRxzRy  , 

two more nulls are observed to be located symmetrically 
with respect to the middle of the two waists.

(162)znull =
z0x zRy + z0y zRx

zRy + zRx

(163)znull =
1

2

(

(z0x + z0y) ±
√

(z0x − z0y)
2 − 20 zRxzRy

)

Fig. 50  Normalized beam radius as a function of sample position 
numerically calculated using Eq. (165) in the case of cubic nonlinear-
ity with ΔΦ

0
= 1
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Figure 49 shows the CA Z-scan traces calculated using 
the Fresnel diffraction integral assuming that astigmatic laser 
beams have the same ellipticity of e = w0y

/

w0x = 1.5 and the 
same maximum phase change of ΔΨmax = 2 but different waist 
separations. The waists are located equidistant from the origin 
of the z-axis. A larger beam waist is assumed before the ori-
gin; thus, the sample first encounters a larger beam size and 
then a smaller beam size; therefore, the depth of the valley is 
less than the height of the peak in all the traces in Fig. 49. For 
an ellipticity of e = 1.5, the critical separation 

√

20zRxzRy  is 
approximately 6.71 zRx . This value is, of course, not exactly 
accurate since Eq. (161) is an approximate relation derived 
as the on-axis normalized transmittance for small phase dis-
tortion. Accurate numerical calculations show that the criti-
cal waist separation is 6.82 zRx instead of 6.71 zRx (dashed red 
curve shows two null points in Fig. 49). In Fig. 49, the solid 
blue curve shows the Z-scan for an astigmatic beam with a 
waist separation of 5 zRx (less than the critical value); there-
fore, a single null point is observed. The dotted green curve in 
Fig. 49, showing three null points, illustrates the CA Z-scan 
transmittance using an astigmatic beam with a waist separation 
larger than the critical value ( Δz0xy = 10 zRx).

4.2.3  Simultaneous 3rd‑ and 5th‑order NL refractivity

When both the 3rd- and 5th-order of NL refractivity are 
responsible for the refractive index change, the normalized 
transmittance can be obtained by combining Eqs. (157) and 
(161) [87].

Equation (164) holds for small phase distortion with the 
same definitions presented in the previous sections.

5  Z‑scan technique through beam radius 
measurements

In a modified version of a Z-scan, the beam radius rh on 
the far-field plane is measured as a function of the sample 
position. In this method, there is no aperture or lens after 
the sample; thus, instead of the transmitted power, the beam 
radius is measured using a CCD camera.rh can be defined 
as the distance from the beam center to the points where 
the intensity decreases to a specific fraction h of its on-axis 

(164)
T(z) = 1 + 2p1 ΔΦmax

�

√

(X2 + 9) (X2 + 1) (Y2 + 9) (Y2 + 1) − (X2 + 3) (Y2 + 3) + 4X Y

2 (X2 + 9) (X2 + 1) (Y2 + 9) (y2 + 1)

+2p2 ΔΨmax

�

√

(X2 + 25) (X2 + 1) (Y2 + 25) (Y2 + 1) − (X2 + 5) (Y2 + 5) + 16X Y

2 (X2 + 25) (X2 + 1)2 (Y2 + 25) (Y2 + 1)2

( r = 0 ) value. (e.g., h = 1
/

e2 corresponds to the commonly 
defined radius w(z) of the Gaussian beam) [83, 90–92, 
125–128].

The radius of the beam entering the CCD camera placed 
in the far field can be numerically calculated through the 
following relationship:

where I(z, rh) = c�0
|

|

E(z, rh)
|

|

2
/

2 with E(z, rh) defined in 
Eq. (79).

For |
|

ΔΦ0
|

|

≤ 1 , the radius peak-to-valley difference Δrp - v 
in a Z-scan normalized radius depends almost linearly on 
|

|

ΔΦ0
|

|

 given in [90–92]

This relation can be used to readily estimate the NL 
refractive index n2 by simply measuring the peak-to-valley 
difference in the Z-scan normalized radius.

Figure 50 shows the normalized beam radius as a func-
tion of sample position for the case of cubic nonlinearity 
with ΔΦ0 = 1 . In the numerical calculation for Fig. 50, the 
observation plane was placed 100 mm away from the focus, 
the laser wavelength was assumed to be 800 nm, and the 
beam waist radius was 20 µm. The self-focusing effect leads 
to beam broadening when the sample is located before the 
waist and, inversely, to beam narrowing when the sample is 
placed after the waist; thus, the Z-scan trace showing a peak 
followed by a valley is a signature of positive NL refractiv-

ity. In Fig. 50, the solid blue curve indicates the beam radius 
as the distance from the beam center where the intensity 
decreases to h = 1∕e of its on-axis value, and the dashed 
red curve shows the radius as the distance from the beam 
center where the intensity decreases to h = 1∕e2 of its on-
axis. As shown in Fig. 50, the sensitivity of the measurement 
defined as p = Δrp - v

/

|

|

ΔΦ0
|

|

= 0.154 h−0.214 is greater for 
lower values of h . This is because the variations in the beam 
radius become very large in the region of the beam wings. 
However, for very low values of h , the beam intensity is 
very weak compared to the noise level, thus introducing high 
uncertainty into the measurements. Therefore, to achieve a 
reliable signal-to-noise ratio, the value of h must be kept at 
an optimum level, compromising between high sensitivity 
and low uncertainty [90–92].

(165)I(z, rh) = h I(z, 0)

(166)Δrp - v = 0.154 h−0.214 |
|

ΔΦ0
|

|
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6  Two‑photon spectra

In conventional OA Z-scan, the 2PA cross section is obtained 
for the specific wavelength delivered by the source used for 
the experiment. For many purposes, wavelength-resolved 
2PA spectra must be obtained. For instance, the wavelength 
of the laser can be tuned to the peak absorption spectrum in 
2PA-based applications to enhance the process efficiency. 
Additionally, for newly developed compounds, 2PA spec-
tra are essentially necessary as a guideline for designing 

Fig. 51  Schematic diagram of the WLC Z-scan setup.  P1 and  P2 are prisms, FCL is the focusing cylindrical lens, CCL is the collecting cylindri-
cal lens, NDF is the neutral density filter, CCD is the charged coupled device (camera) and LS is the linear stage [36–38]

Fig. 52  Typical WLC Z-scan results at different wavelengths meas-
ured simultaneously during a single scan [36–38]

Fig. 53  2PA spectra for three different 2PIs determined by WLC 
Z-scan [35]

Fig. 54  Schematic diagram of the EZ-scan setup
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molecules with higher 2PA cross sections. To determine the 
2PA spectra, a tunable laser or a high-intensity white light 
continuum (WLC) source should replace the single wave-
length source used in conventional Z-scan. Different meth-
ods have been utilized for determining 2PA spectra, which 
are introduced in the following sections.

6.1  Using tunable lasers to determine the 2PA 
spectrum

An optical parametric amplifier (OPA) or optical paramet-
ric oscillator (OPO) can be used as a tunable laser source 
for determining the 2PA spectrum. The conventional OA 
Z-scan can be repeated at different wavelengths by tuning 
the central wavelength of the laser output. From each Z-scan 
trace, the 2PA cross section at the tuned wavelength can 
be extracted. Applying this method yields 2PA spectra in a 
point-by-point fashion [30–32, 129–132]. For instance, to 
obtain 2PA spectra in the range of 600–950 nm with a reso-
lution of 10 nm, the Z-scan experiment must be repeated 35 
times, which is cumbersome and time-consuming.

6.2  Using WLC to determine the 2PA spectrum

The WLC [133], as a broadband coherent light source, can 
be generated by focusing highly energetic short pulses into 
transparent media such as water [27], glass [134], optical 
fibers [135], photonic crystals [136], dielectric and semicon-
ductors [137], crystals such as  BaF2 [138] and inert gases 
such as Krypton or Argon [139, 140]. The WLC Z-scan is 
an improved version of the conventional Z-scan in which a 
single wavelength (i.e., narrow band) laser is replaced with 

a WLC source. 2PA spectral measurements using WLC have 
been performed in various fashions by different groups.

In [27, 28, 30–32, 141, 142], a series of narrow band 
filters with different central transmittance wavelengths were 
used to select a narrow range of the WLC spectrum by plac-
ing the filter in front of the WLC beam. The beam trans-
mitted through the filter, which likely behaves as a single 
wavelength source, can be used to perform conventional 
single-beam single-wavelength Z-scan. By changing the fil-
ter and repeating the Z-scan at different wavelengths, 2PA 
spectra can be obtained in a point-by-point fashion, which 

Fig. 55  Comparing the CA (standard) Z-scan calculated numeri-
cally using Eq.  (95) and eclipsing Z-scan calculated numerically 
using Eq.  (167) revealing the same phase change in the case of 
Sa = Sd = 0.5 . The results were calculated numerically using Eq

Fig. 56  Comparison of the CA Z-scan calculated numerically using 
Eq. (95) and EZ-scan calculated numerically using Eq. (167) reveal-
ing the same phase change in the case of Sa = 0.01 and Sd = 0.99

Fig. 57  The transmittance peak-to-valley difference versus aperture 
transmittance (disk obscureness) for a CA Z-scan calculated numeri-
cally using Eq.  (95) (eclipsing Z-scan calculated numerically using 
Eq.  (167)). For Sd > 0.98 , the sensitivity of the EZ-scan is approxi-
mately one order of magnitude greater than the maximum sensitivity 
of a CA Z-scan
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is also cumbersome and time-consuming, as in the case of 
using tunable lasers.

In [33, 34, 143], the WLC beam is focused entirely in 
a single spot within the material using a spherical lens. In 
this way, the 2PA process occurs via both degenerate and 
nondegenerate processes since the irradiated volume of the 
sample receives all the entire wavelength in the WLC spec-
trum. In this method, the NL transmittance is measured by a 
spectrometer as a function of the sample position. Although 
the measured Z-scan show the NL transmittance for differ-
ent wavelengths, they comprise both degenerate and non-
degenerate 2PAs over the entire spectrum of the WLC with 
unknown contributions from each process. Therefore, it is 
not feasible to determine the pure degenerate 2PA spectra 
using this method. However, this method provides a simple 
way to obtain the wavelength-resolved nondegenerate 2PA 
cross section.

In [73, 144–146], the WLC beam is dispersed spatially 
and then focused by a spherical lens into the center of 
the sample. With this arrangement, different spectral com-
ponents of the WLC beam are spatially separated from 
each other at the sample position, and only degenerate 
TPA from the same spectral component can occur. In 
this method, the sample is fixed at the focal point where 
the WLC beam is focused; thus, this technique cannot be 
considered a Z-scan technique. The radiation transmitted 
through the pure solvent as well as through the prepared 
sample is detected by a spectrometer. By comparing the 
transmission of the sample at the focus to that of the pure 
solvent, the attenuation of different spectral components 
can be determined. In this method, although the obtained 
spectrum is relevant to the degenerate 2PA process it rep-
resents the relative but not the absolute value of the 2PA 
cross section. To determine the absolute 2PA spectrum, 
a separate Z-scan should be performed at a single wave-
length to determine the 2PA cross section required for 
calibration and converting the relative 2PA spectrum to 
absolute values.

We proposed a new method to determine the wave-
length-resolved degenerate absolute 2PA spectrum by 
performing a single scan using WLC [35–38]. The WLC 
was generated by focusing 30 fs, 500 mJ Ti:sapphire laser 
pulses at the entrance of a hollow fiber inside a cham-
ber filled with Ar gas at ambient pressure. The spec-
trally broadened light with bandwidth ranging from 500 
to 1000 nm exiting the hollow fiber then travels through 
an ultrabroadband dispersive mirror compressor, leading 
to compressed pulses with a duration of less than 8 fs. 
The generated WLC was spatially dispersed and then 
collimated using a prism pair, leading to a rectangular 
beam cross section with a height of 10 mm and width 
of 30 mm. The beam was focused by a cylindrical lens 
to produce a focal line inside the sample. A 50 mm wide 

cuvette containing the sample solution mounted on a 
motorized translation stage was scanned along the propa-
gation direction, similar to a conventional Z-scan. In this 
method, different spectral components of the WLC beam 
are spatially separated within the illuminated region of 
the sample; thus, only degenerate 2PA occur at each point 
of the sample. At each z-position, the transmitted inten-
sity distribution is entirely imaged by a CCD line camera 
using a cylindrical lens (Fig. 51). The transmittance as a 
function of sample position measured by each pixel of the 
CCD line camera yields a Z-scan signal corresponding to 
a specific wavelength. This means that if the CCD camera 
has N pixels, N Z-scan signals are obtained by perform-
ing only a single scan along the z-axis. Thus, out of each 
signal measured by each pixel, the 2PA cross section can 
be extracted for each specific wavelength; therefore, the 
2PA spectra can be determined via a single scan. 

Figure 52 shows selected Z-scan signals at different 
wavelengths measured simultaneously via a single scan 
for the P2CK photoinitiator.

Figure 53 shows the 2PA spectra for three different 2PIs 
determined by the WLC Z-scan in the wavelength range 
of 680–920 nm.

7  Eclipsing Z‑scan (EZ‑scan)

This modified version involves replacing the far-field aper-
ture used in the CA Z-scan with an obscuration disk that 
blocks most of the beam. The resulting pattern of light that 
passes around the edge of the disk appears as a thin halo 
of light that looks like a total solar eclipse; hence, this 
technique is named the EZ-scan [147]. In this method, as 

Fig. 58  Schematic diagram of the RZ-scan setup. CA RZ-scan with 
aperture A and OA RZ-scan with removed aperture A. The mirror is 
mounted on the same sample stage to guarantee beam positioning on 
the detector  Dc
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shown in Fig. 54, the power transmitted around the edge of 
the disk is measured as a function of the sample position. 
Therefore, the EZ normalized transmittance is defined as 
follows:

Unlike the CA Z-scan, the eclipsing Z-scan has a more 
complex setup; however, it has been employed in many 
works [39, 40, 45, 148–152] due to its high sensitivity in 
determining the NL refractivity. In a modified version of the 
EZ-scan, the disk, instead of the sample, is scanned along 
the Z direction in the vicinity of the sample. This version is 
known as the disk Z-scan (DZ-scan) technique [24].

As mentioned in Sect. 4.1.1, for CA Z-scan in the case of 
cubic nonlinearity, the transmittance peak-to-valley differ-
ence depends linearly on the on-focus phase change obey-
ing the relation ΔT(p - v) = 0.406 (1 − Sa)

0.25ΔΦ0 where 
Sa = 1 − exp(−2r2

a

/

w2) denotes the aperture transmittance 
with ra the aperture radius. Numerical calculations show that 
in EZ-Scan, ΔT(p - v) also has a linear dependence on ΔΦ0 , 
which is given by

where Sd = 1 − exp(−2r2
d

/

w2) denotes the disk obscureness 
and rd is the disk radius.

The peak-to-valley separation is empirically given by 
Δzpv = 0.95 zR.

As indicated in Fig. 55, the CA and eclipsing Z-scan have 
the same sensitivity as long as the aperture transmittance 

(167)T(z) =
∫ +∞

−∞
∫ ∞

a
|

|

Ea(r, t,ΔΦ)|
|

2
r dr dt

∫ +∞

−∞
∫ ∞

a
|

|

Ea(r, t,ΔΦ = 0)|
|

2
r dr dt

(168)ΔTp - v = 0.68 (1 − Sd)
−0.44

|

|

ΔΦ0
|

|

and disk obscureness are the same. It should be noted that 
the EZ-scan trace illustrating a peak followed by a valley is 
a signature of positive NL refractivity, which is opposite to 
that observed in a standard CA Z-scan.

Figure 56 shows a comparison between a CA Z-scan with 
Sa = 0.01 and an EZ-scan with Sd = 0.99 assuming a phase 
change of ΔΦ0 = 0.1 . The sensitivity of the EZ-scan is more 
than 10 times greater than that of the CA Z-scan.

In Fig. 57, the transmittance peak-to-valley difference, 
as a measure of sensitivity, was plotted versus the aperture 
transmittance (disk obscureness) for a CA Z-scan and an EZ-
scan for comparison. As shown in this figure, by decreasing 
the aperture transmittance in the CA Z-scan, the sensitivity 

Fig. 59  OA RZ-scan transmittance based on Eq.  (174) for differ-
ent on-focus intensities corresponding to different refractive index 
changes

Fig. 60  Maximum reflectance change versus the NL refractive index 
and extinction coefficient at the on-axis surface point when the sam-
ple is located at the beam waist position. The results were numeri-
cally calculated using Eq. (174)

Fig. 61  CA RZ-scan normalized on-axis transmittance numerically 
calculated using Eq. (173) for different intensities assuming n

2
= 0



 A. Ajami et al.  138  Page 36 of 41

increases, but it is saturated to a limited value, whereas 
increasing the disk obscureness leads to an increase in the 
sensitivity almost exponentially without any limit. How-
ever, although a large disk leads to higher sensitivity, it also 
results in a low signal-to-nose ratio and thus a reduction in 
measurement accuracy.

8  Reflection Z‑scan (RZ‑scan)

In the transmittance Z-scan (TZ-scan) experiment, the light 
field transmitted through the sample is measured as a func-
tion of the sample as it is scanned along the propagation 

direction of the focused laser beam; therefore, the sample 
should be transparent at the wavelength of irradiation used 
for examination (i.e., it should show no or negligible linear 
absorption at the wavelength of interest). For opaque sam-
ples with high linear absorption, a modified Z-scan called 
the RZ-scan was introduced in 1994 [54]. In this method, 
instead of transmitted light, the light reflected from the sur-
face or interface of the sample is measured as a function of 
the sample position. Similar to TZ-scan, the RZ-scan could 
be performed in different versions of CA and OA. In the CA 
method, the absorptive nonlinearities, which are responsible 
for the phase changes in the reflected beam, can be deter-
mined [47–49, 54–57, 85], and in the OA method, the refrac-
tive nonlinearities, which are responsible for the amplitude 
changes of the reflected radiation, can be determined by 
measuring the reflection coefficient [47–49, 60, 85, 153].

Figure 58 shows a schematic of the RZ-scan setup, in 
which the detector Dc measures the power reflected from 
the sample. Similar to TZ-scans, RZ-scans can be performed 
with a small aperture (CA version) or without an aperture 
(OA version).

The Fresnel amplitude reflection coefficient for a medium 
is given by [122].

where � is the incident angle and ñ denotes the complex 
refractive index defined as ñ = n + ik with n the refractive 
index and k the extinction coefficient.

(169)r̃(𝜃) =
ñ2 cos(𝜃) −

√

ñ2 − sin2(𝜃)

ñ2 cos(𝜃) +
√

ñ2 − sin2(𝜃)

Fig. 62  OA RZ-scan assuming different orders of nonlinearity; the 
solid blue curve for the 3rd-order, the dashed red curve for the 5th-
order and the dotted green curve for the 7th-order. The results were 
numerically calculated using Eq. (175)

Fig. 63  OA normalized transmittance I-scan in the range of 
q
0
= 0.02 → 2 calculated numerically using Eq. (176)

Fig. 64  CA normalized I-scan transmittance for different sample 
positions. The solid blue curve and the dotted green curve represent 
the numerical calculation (NC) for the postfocus and prefocus sam-
ple position respectively. The dashed red curve and the dashed dot-
ted brown curve indicate the results obtained in small phase change 
approximation (SPCA) from Eq. (178) for the postfocus and prefocus 
sample position respectively
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For small changes in the complex refractive index, the 
reflection coefficient can be expressed as follows using Tay-
lor expansion [85]:

where Δñ(𝜌, z) = ñ2I(𝜌, z) + ñ4I
2(𝜌, z) +⋯ is the NL refrac-

tive index change and r̃0(𝜃) is the amplitude reflection coef-
ficient in the linear regime.

The amplitude of the reflected field is defined as 
ER(𝜌, z, t, 𝜃) = r̃(𝜌, z, 𝜃)Ein(𝜌, z, t) with � and z the radial 
and axial coordinates, respectively. In the case of normal 
incidence ( � = 0 ), the reflected wave field distribution at 
the interface air sample is given by [54, 55] assuming cubic 
nonlinearity.

where r0 = (n0 − 1 + ik0)
/

(n0 + 1 + ik0) is the linear ampli-
tude reflection coefficient,r1 = 2

/

(n0 + 1 + ik)2 , n2 is the NL 
refractive index and k2 is the NL extinction coefficient, both 
of which have the same unit of m2.W−1 in the SI system.

Using the Fresnel diffraction integral, the on-axis inten-
sity at the far-field aperture plane can be derived [54, 55].

w h e r e  G0 = 1 + (z + d)(z − iz0)
/

(z2 + z2
0
)  a n d 

G1 = 1 + (z + d)(z − i3z0)
/

(z2 + z2
0
) , with d being the dis-

tance between the aperture plane and the beam waist.
The CA RZ-scan trace, defined as the normal-

ized reflected power transmitted through the aperture 
R(z) = ∫ ra

0
I(z, r1)�d�

/∫ ra
0

I(z, r1 = 0)�d� , is then calcu-
lated as given in [154].

The OA RZ-scan trace showing the normalized power 
reflection is defined as follows [60].

Figure 59 shows the OA RZ-scan traces based on Eq. (174) 
using data from Ref. [85] for GaAs measured at � = 538 nm 
with n0 = 4.3 , k0 = 0.363 , n2 = 7.8 × 10−8 cm2.W−1 and 
k2 = −2.8 × 10−8 cm2 W−1 . The traces are plotted for differ-
ent on-focus intensities, leading to different on-focus refractive 
index changes.

Figure 60 shows the calculated reflectance peak versus the 
NL refractive index n2 and NL extinction coefficient k2 using 

(170)
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dr̃
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Eq. (174), revealing that the peak reflectance increases almost 
linearly with n2 , whereas its dependency on k2 is very weak. 
Therefore, the refractive nonlinearity is responsible for the 
amplitude of the reflected beam, so that the greater the refrac-
tive index change is, the stronger the reflated field.

Figure 61 shows the normalized on-axis transmittance of 
the CA RZ-scan numerically calculated using Eq. (173) for 
different extinction coefficient changes caused by different on-
focus intensities.

In the case of a normal incident and assuming n >> k , the 
normalized reflectance, including the contribution of all orders 
of nonlinearities derived from Eq. (174), is given by

where the index l denotes the order of the nonlinearity [153].
In Fig. 62, OA RZ-scan normalized transmittances numer-

ically calculated using Eq. (175) are compared for different 
orders of nonlinearity. As expected, the greater the order of 
nonlinearity is, the narrower the transmittance signal.

9  Other modified versions of the Z‑scan

9.1  I‑scan

This method cannot be categorized as the Z-scan method 
since the sample is not moved during laser beam propaga-
tion but is fixed near the focus; instead, the laser power is 
changed [68, 155]. However, since the Z-scan transmittance 
relation can be used for analyzing the I-scan experimental 
data here, this method is also reviewed. For the case when 
the sample is placed at the focus, the OA normalized trans-
mittance in Eq. (16) derived for CW lasers can be modified 
by letting x = 0 and expressed as a function of intensity

Figure 63 represents the numerically calculated OA normal-
ized transmittance I-scan using Eq. (176) for a 2PA process in 
the intensity range leading to q0 in the range from 0.02 to 2.

The OA normalized transmittance in Eq. (18) derived for 
Gaussian pulses can also be modified by letting x = 0 and 
expressed as a function of intensity [67].
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The CA normalized transmittance in Eq. (98) derived for 
the CW laser can also be modified by letting, for instance, 
x = ±0.5 for the case when the medium is placed half a Ray-
leigh length away from the focus. The intensity dependance 
transmittance can then be expressed as

where the positive/negative sign of the second term is used 
for post/pre focal sample position [68, 156].

Figure 64 shows the normalized transmittance of the CA 
I-scan for a cubic NL medium in the intensity range leading to 
a maximum phase change in the range of 0.02–1 radians. The 
results obtained from numerical calculation (NC) and under 
small phase change approximation (SPCA) are compared form 
different prefocus and postfocus sample positions. The solid 
blue curve indicates the NC using the Fresnel diffraction inte-
gral and the dashed red curve shows the SPCA results based on 
Eq. (178) both for the same postfocus position of z = +0.5zR . 
The dotted green curve presents the NC using the Fresnel dif-
fraction integral and the dashed dotted brown curve shows the 
SPCA results based on Eq. (178) both for the same prefocus 
position of z = −0.5zR . These comparisons reveal that placing 
the sample close to but after the focus leads to accurate results 
in the I-scan experiment.

9.2  f‑scan

An alternative method to the Z-scan is called the f-scan, in 
which the sample is fixed in some place but the focal point of 
the focused laser beam is moved instead of moving the sam-
ple. Since the movement is relative, translating the focal point 
against the laser propagation direction is equivalent to moving 
the sample in the laser propagation direction; thus, the theory 
and derived equations for Z-scan can be entirely employed for 
f-scan. Translation of the focus could be easily performed by 
moving the lens itself or using an electrically focus-tuneable lens 
[62–64]. In the latter case, the sample and the lens are fixed, but 
the focal length of the lens is changed electrically. In this case, 
care should be taken when calculating the on-focus intensity, as 
the beam waist radius changes with the focal length.

9.3  HS‑scan

In this technique, instead of a detector for measuring the power 
transmitted through the sample, a Harman–Shack (HS) sensor 
is used to determine the phase of the transmitted light [157]. 
The main advantage of this technique is that the wavefront 
analyzer simultaneously measures the wavefront distortion, 
and the transmittance changes as a function of sample posi-
tion; thus, both the NL refractivity and absorptivity can be 
determined using just one detector placed after the sample.

(178)T(I0) = 1 ± (0.14 kn2Leff )I0

9.4  Bray scan

This technique was proposed in [158]. In this technique, the 
photodiode is replaced by a position sensitive detector (PSD) 
to detect the beam centroid. Self-focusing or self-defocusing 
leads to a change in the beam size, but the center of the laser 
spot remains unchanged if a circular symmetric beam arrives 
on the sensor. By placing a blade in front of the PSD so that 
half of the beam is truncated, any increase or decrease in 
the beam size leads to a change in the position of the beam 
centroid on the PSD. Using this technique to determine the 
NL refractivity, an improved sensitivity of �

/

5 × 104 was 
reported in [158].

10  Conclusion

The Z-scan technique, the most commonly employed method 
for determining the NL absorption and refraction coefficient, 
is well known for being used in the field of NL optics. How-
ever, a comprehensive and detailed review of all versions of 
the Z-scan along with the appropriate calculations is rare in 
the literature. This review was prepared with the purpose 
of presenting known versions of Z-scan to help researchers 
choose an appropriate version of Z-scan for the characteri-
zation of their materials. In Sect. 1, NL optics and several 
famous optical NL phenomena were briefly introduced. 
Then, the NL susceptibilities and their relationships with 
the NL absorption and refraction coefficients were presented, 
and various techniques for determining the NL absorption 
and refraction coefficients were described. Section 2 was 
devoted to a brief introduction to the Z-scan technique, illus-
trating the setup of the CA and OA Z-scan. In Sect. 3.1.1, 
the appropriate relationships for determining the 2PA coef-
ficient were derived when a circular Gaussian beam is used in 
the OA Z-scan method. Similar to Sect. 3.1.1, in Sect. 3.1.2, 
the analysis for deriving the required relation to obtain the 
3PA coefficient was performed. For simultaneous 2PA and 
3PA processes, the analytical calculations were presented in 
Sect. 3.1.3, and for higher order MPAs, the results were pre-
sented in Sect. 3.1.4. In Sect. 3.1.5, the saturable absorption 
was discussed, the OA Z-scan signal for this NL process was 
numerically calculated, and then, the analytical relationships 
were obtained. In Sect. 3.2, the OA Z-scan was assumed to 
be performed with an astigmatic Gaussian beam. Numerical 
calculations were performed to determine the behavior of the 
OA Z-scan signal, and appropriate relationships were derived 
to extract the MPA coefficient from the OA Z-scan trace. In 
Sect. 4, diffraction integrals were introduced to calculate the 
CA Z-scan normalized transmittance, and in Sect. 4.1, the 
CA normalized transmittance was numerically calculated for 
different orders of nonlinearities as well as for simultane-
ous absorptive and refractive processes. Then, appropriate 
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relationships were derived to obtain the NL refractive index 
when a circular Gaussian laser beam was used to perform 
the CA Z-scam experiment. All analyses and calculations 
presented in Sect. 4.1 were repeated in Sect. 4.2 for the case 
of using an astigmatic beam for the CA Z-scam experiment. 
In Sect. 5, it was explained that how the NL refractive index 
can be obtained by measuring the beam size on the far-field 
plain instead of measuring the power transmitted through 
an aperture. Section 6 was devoted to introducing different 
methods for determining the 2PA spectrum using a white 
light continuum or tunable laser sources. In Sect. 7, eclips-
ing Z-scan was introduced and compared with CA Z-scan. 
Numerical calculations showed that the sensitivity of the 
EZ-scan could be tens of times greater than that of the CA 
Z-scan. Reflection Z-scan suitable for opaque materials, in 
which the reflected power is measured instead of the trans-
mitted power, was reviewed in Sect. 8. In Sect. 9, some other 
methods which can be categorized as the Z-scan method, 
were briefly introduced. Overall, we prepared a review in 
which information regarding the Z-scan technique, includ-
ing the different methods, numerical calculation results and 
analytical derivations, can be found.
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